Skip to main content
Log in

Investigation of the separation of scandium and rare earth elements from red mud by use of reversed-phase HPLC

  • Special Issue Paper
  • Published:
Analytical and Bioanalytical Chemistry Aims and scope Submit manuscript

Abstract

A chromatographic method has been developed for separation and determination of scandium (Sc) and rare earth elements (REEs) in samples from a red mud (RM)-utilization process. Reversed-phase high-performance liquid chromatography (RP-HPLC) with post-column derivatization using 4-(2-pyridylazo)-resorcinol (PAR) and UV–visible detection at 520 nm was tested using different gradient elution profiles and pH values to optimize separation and recovery, primarily for Sc but also for yttrium and the individual lanthanides, from iron present in the samples. The separation was performed in less than 20 min by use of a mobile phase gradient. The concentration of α-hydroxyisobutyric acid (α-HIBA), as eluent, was altered from 0.06 to 0.4 mol L–1 (pH 3.7) and 0.01 mol L–1 sodium salt n-octane sulfonic acid (OS) was used as modifier. Very low detection limits in the nanogram range and a good resolution for Sc and REEs except for Y/Dy were achieved. Before application of the method to the red mud samples and to the corresponding bauxites, Sc and REEs were leached from red mud with 0.6 mol L–1 HNO3 and mostly separated, as a group, from the main elements by ion exchange/selective elution (6 mol L–1 HNO3) in accordance with a pilot-plant process developed in this laboratory. After evaporation of the eluent to dryness the extracted elements were re-dissolved in the mobile phase. By use of this chromatographic method Sc, which is the most expensive of the elements investigated and occurs in economically interesting concentrations in red mud, could be separated not only from co-existing Fe but also from Y/Dy, Yb, Er, Ho, Gd, Eu, Sm, Nd, Pr, Ce and La. All the elements investigated were individually recovered. Their recoveries were found to be nearly quantitative.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2

Similar content being viewed by others

References

  1. Vijayan S, Melnyk AJ, Singh RD, Nutall K (1989) Miner Eng 41:13

    Google Scholar 

  2. Rao TP, Biju M (2000) Crit Rev Anal Chem 30:179

    CAS  Google Scholar 

  3. Buchmeiser MR (2001) Rev Anal Chem 20:161

    CAS  Google Scholar 

  4. http://www.stanfordmaterials.com/

  5. Hedrick J, US Geological Survey. Reston, USA, e-mail: jhedrick@usgs.gov (personal communication)

  6. Yang X, Gu Z, Wang D (1995) J Membr Sci 106:131

    Article  CAS  Google Scholar 

  7. Ochsenkühn-Petropulu M, Lyberopulu Th, Parissakis G (1994) Anal Chim Acta 296:305

    Article  Google Scholar 

  8. Ochsenkühn-Petropulu M, Lyberopulu Th, Parissakis G (1995) Anal Chim Acta 315:231

    Article  Google Scholar 

  9. Aluminium of Greece, Pechiney Group. http://www.alugre.pechiney. com /gr/(in Greek)

  10. Ochsenkühn-Petropulu M, Lyberopulu Th, Ochsenkühn KM, Parissakis G (1996) Anal Chim Acta 319:249

    Article  Google Scholar 

  11. NTUA/Chemical Engineering Department, Laboratory of Inorganic and Analytical Chemistry, Aluminium of Greece ABEE, Final Report of the EPET II Project (Code: 98BIA-29) “Application and demonstration in pilot scale of a novel method for the treatment and exploitation of red mud: waste of metallurgical activity of Greek industry”, General Secretariat of Research and Development of Greece: Athens, Greece, July 2001 (in Greek): p 160

  12. Ochsenkühn-Petropoulou M, Hatzilyberis K, Mendrinos L, Salmas C (2002) Ind Eng Chem Res 41:5794

    Article  Google Scholar 

  13. Ochsenkühn-Petropoulou M, Mendrinos L, Tsakanika L (2001) In: Proceedings of the 2nd international conference of instrumental method of analysis (IMA 2001), Ioannina, 5–8 September 2001, p 16, 85

  14. Zvarova TS, Zvara I (1969) J Chromatogr A 44:604

    Article  CAS  Google Scholar 

  15. Strelow FWE (1980) Anal Chim Acta 120:249

    Article  CAS  Google Scholar 

  16. Haddad PR (1997) J Chromatogr A 770:281

    CAS  Google Scholar 

  17. Ma Z, Zhang L, Han S (1997) J Chromatogr A 766:282

    Article  CAS  Google Scholar 

  18. Jones EA, Bezuidenhout HS, Van Staden JF (1991) J Chromatogr A 537:277

    Article  CAS  Google Scholar 

  19. Rollin S, Kopatjtic Z, Wernli B, Magyar B (1996) J Chromatogr A 739:139

    Article  Google Scholar 

  20. Nesterenko PN, Jones P (1998) J Chromatogr A 804:223

    Article  CAS  Google Scholar 

  21. Garcia-Valls R, Hrdlicka A, Perutka J, Havel J, Deorkar NV, Tavlarides LL, Munoz M, Valiente M (2001) Anal Chim Acta 439:247

    Article  CAS  Google Scholar 

  22. Cassidy RM (1988) Chem Geol 67:185

    Article  CAS  Google Scholar 

  23. Moraes NMP, Shihomatsu HM (1994) J Chromatogr A 679:387

    Article  CAS  Google Scholar 

  24. Raut NM, Jaison PG, Aggarwal SK (2002) J Chromatogr A 959:163

    Article  CAS  PubMed  Google Scholar 

  25. Miranda P Jr, Manduar MF, Vincentini G, Zinner LB, Moraes NMP, Shihomatsu HM (2002) J Alloys and Compounds 344:46

    Article  CAS  Google Scholar 

  26. Morales R, Bartholdi CS, Cunningham PT (1988) Talanta 35:461

    Article  CAS  Google Scholar 

  27. Santoyo E, Verma SP (2003) J Chromatogr A 997:171

    Article  CAS  PubMed  Google Scholar 

  28. Moraes NMP, Shihomatsu HM, Zinner LB, Miranda P Jr (1997) J Alloys Compounds 249:133

    Article  CAS  Google Scholar 

  29. Sarzanini C (1999) J Chromatogr A 850:213

    CAS  PubMed  Google Scholar 

  30. Wu H, Watanabe N, Gohshi Y, Kotama R (1999) Fresenius J Anal Chem 363:424

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Maria Th. Ochsenkühn-Petropoulou.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Tsakanika, L.V., Ochsenkühn-Petropoulou, M.T. & Mendrinos, L.N. Investigation of the separation of scandium and rare earth elements from red mud by use of reversed-phase HPLC. Anal Bioanal Chem 379, 796–802 (2004). https://doi.org/10.1007/s00216-004-2667-1

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00216-004-2667-1

Keywords

Navigation