Skip to main content
Log in

Recovery of iron and rare earth elements from red mud through an acid leaching-stepwise extraction approach

酸浸-分步萃取法从赤泥中回收铁和稀土

  • Article
  • Published:
Journal of Central South University Aims and scope Submit manuscript

Abstract

A feasible approach to selectively recover iron and rare earth elements (REEs) from red mud through acid leaching-coordination-solvent extraction was proposed. The leaching efficiencies of Fe, Al, Ti, Sc, La, Ce, Nd and Y can reach up to 95.9%, 82.1%, 68.3%, 93.3%, 82.3%, 96.9%, 98.3% and 95.6%, respectively, under the optimal condition in the leaching process. Aliquat 336 showed excellent extraction performance of iron in chloride-rich solution, and the maximum extraction efficiency can reach over 96% in one time extraction while the loss of other metals was less than 10%, under the condition of Aliquat 336 concentration (v/v) of 30%, aqueous-organic ratio of 1.0 and extraction time of 20 min. Furthermore, P204 can effectively extract the scandium while Al and most other REEs remain in the aqueous phase. This approach may provide a new insight for the recovery of valuable resources from red mud.

摘要

提出了一种“酸浸-配位萃取”选择性回收赤泥中的铁和稀土的新工艺。浸出过程表明,在优化条 件下,Fe、Al、Ti、Sc、La、Ce、Nd 和Y 的浸出率分别可达95.9%,82.1%,68.3%,93.3%,82.3%, 96.9%,98.3%和95.6%。Aliquat 336 在高氯体系下表现出良好的萃铁性能,以30% Aliquat 336 +15% 仲辛醇+55%煤油为萃取有机相对浸出液中的铁进行萃取,在相比为1,萃取时间为20 min 的条件下, 铁单级萃取率可达95.7%,各稀土元素损失率不足10%,铁和稀土有较好的分离效果。以P204 对萃 铁后液中的钪进行回收,可以将钪富集在萃取剂中与Al 和大部分稀土元素分离。

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. XUE Sheng-guo, KONG Xiang-feng, ZHU Feng, HARTLEY W, LI Xiao-fei, LI Yi-wei. Proposal for management and alkalinity transformation of bauxite residue in China [J]. Environmental Science and Pollution Research, 2016, 23(13): 12822–12834. DOI: 10.1007/s11356-016–6478-7.

    Article  Google Scholar 

  2. KONG Xiang-feng, TIAN Tao, XUE Sheng-guo, HARTLEY W, HUANG Long, WU Chuan, LI Chu. Development of alkaline electrochemical characteristics demonstrates soil formation in bauxite residue undergoing natural rehabilitation [J]. Land Degradation & Development, 2018, 29(1): 58–67. DOI: 10.1002/ldr.2836.

    Article  Google Scholar 

  3. WANG Meng, HU Hui, LIU Jin, CHEN Qi. Negative effect of dissolved organic compounds on settling behavior of synthetic monominerals in red mud [J]. Journal of Central South University, 2016, 23(7): 1591–1602. DOI: 10.1007/s11771-016-3213-y.

    Article  Google Scholar 

  4. LIU Zhao, LI Hong. Metallurgical process for valuable elements recovery from red mud—A review [J]. Hydrometallurgy, 2015, 155: 29–43. DOI: 10.1016/j.hydromet.2015.03.018.

    Article  Google Scholar 

  5. KONG Xiang-feng, JIANG Xing-xing, XUE Sheng-guo, HUANG Ling, HARTLEY W, WU Chuan, LI Xiao-bin. Migration and distribution of saline ions in bauxite residue during water leaching [J]. Transactions of Nonferrous Metals Society of China, 2018, 28(3): 534–541. DOI: 10.1016/S1003-6326(18)64686-2.

    Article  Google Scholar 

  6. ZHU Feng, HOU Jing, XUE Sheng-guo, WU Chuan, WANG Qiong, HARTLEY W. Vermicompost and gypsum amendments improve aggregate formation in bauxite residue [J]. Land Degradation & Development, 2017, 28(7): 2109–2120. DOI: 10.1002/ldr.2737.

    Article  Google Scholar 

  7. XUE Sheng-guo, ZHU Feng, KONG Xiang-feng, WU Chuan, HUANG Ling, HUANG Nan, HARTLEY W. A review of the characterization and revegetation of bauxite residues (red mud) [J]. Environmental Science and Pollution Research, 2016, 23(2): 1120–1132. DOI: 10.1007/s11356-015–4558-8.

    Article  Google Scholar 

  8. ZHU Feng, LIAO Jia-xin, XUE Sheng-guo, HARTLEY W, ZOU Qi, WU Hao. Evaluation of aggregate microstructures following natural regeneration in bauxite residue as characterized by synchrotron-based X-ray micro-computed tomography [J]. Science of the Total Environment, 2016, 573: 155–163. DOI: 10.1016/j.scitotenv. 2016.08.108.

    Article  Google Scholar 

  9. ZHU Feng, CHENG Qing, XUE Sheng-guo, LI Chu-xuan, HARTLEY W, WU Chuan. TIAN Tao. Influence of natural regeneration on fractal features of residue microaggregates in bauxite residue disposal areas [J]. Land Degradation and Development, 2018, 29(1): 138–149. DOI: 10.1002/ldr.2848.

    Article  Google Scholar 

  10. XUE Sheng-guo, YE Yu, ZHU Feng, WANHG Qiong, JIANG Jun, HARTLEY W. Changes in distribution and microstructure of bauxite residue aggregates following amendments addition [J]. Journal of Environmental Sciences, 2019, 78: 276–286. DOI: 10.1016/j.jes.2018.10.010.

    Article  Google Scholar 

  11. LIU Wan, YANG Jia, XIAO Bo. Review on treatment and utilization of bauxite residues in China [J]. International Journal of Mineral Processing, 2009, 93(3, 4): 220–231. DOI: 10.1016/j.minpro.2009.08.005.

    Article  Google Scholar 

  12. XUE Sheng-guo, LI Meng, JIANG Jun, MILLAR G J, LI Chu-xuan, KONG Xiang. Phosphogypsum stabilization of bauxite residue: Conversion of its alkaline characteristics [J]. Journal of Environmental Sciences, 2019, 77: 1–10. DOI: 10.1016/j.jes.2018.05.016.

    Article  Google Scholar 

  13. VINCENZO M S, RENZO C, STEFANO M, GIOVANNI C, MARZIO M, GEROLAMO B, GIORGIO C. Bauxite ‘red Mud’ in the ceramic industry. Part 1: Thermal behaviour [J]. Journal of the European Ceramic Society, 2000, 20(3): 235–244. DOI: 10.1016/S0955-2219(99)00088-6.

    Google Scholar 

  14. LIU Jin, HU Hui, WANG Meng, CHEN Xiang, CHEN Qi, DING Zhi. Synthesis of modified polyacrylamide with high content of hydroxamate groups and settling performance of red mud [J]. Journal of Central South University, 2015, 22(6): 2073–2080. DOI: 10.1007/s11771-015-2731-3.

    Article  Google Scholar 

  15. LIAO Jia-xin, JIANG Jun, XUE Sheng-guo, CHENG Qing, WU Hao, RAJENDRAN M, HARTLEY W, HUANG Long. A novel acid-producing fungus isolated from bauxite residue: the potential to reduce the alkalinity [J]. Geomicrobiology Journal, 2018, 35(10): 840–847. DOI: 10.1080/01490451.2018.1479807.

    Article  Google Scholar 

  16. ZHU Feng, ZHOU Jia, XUE Sheng-guo, HARTLEY W, WU Chuan, GUO Ying. Aging of bauxite residue in association of regeneration: a comparison of methods to determine aggregate stability & erosion resistance [J]. Ecological Engineering, 2016, 92: 47–54. DOI: 10.1016/j.ecoleng.2016.03.025.

    Article  Google Scholar 

  17. LI Guang, LIU Ming, RAO Ming, JIANG Tao, ZHUANG Jin, ZHANG Yuan. Stepwise extraction of valuable components from red mud based on reductive roasting with sodium salts [J]. Journal of Hazardous Materials, 2014, 280: 774–780. DOI: 10.1016/j.jhazmat. 2014.09.005.

    Article  Google Scholar 

  18. DENG Bo, LI Guang, LUO Jun, YE Qing, LIU Ming, PENG Zhi-hong, JIANG Tao. Enrichment of Sc2O3 and TiO2 from bauxite ore residues [J]. Journal of Hazardous Materials, 2017, 331: 71–80. DOI: 10.1016/j.jhazmat.2017. 02.022.

    Article  Google Scholar 

  19. YANG Yang, WANG Xue, WANG Ming, WANG Hua, XIAN Peng. Recovery of iron from red mud by selective leach with oxalic acid [J]. Hydrometallurgy, 2015, 157: 239–245. DOI: 10.1016/j.hydromet.2015.08.021.

    Article  Google Scholar 

  20. YANG Yang, WANG Xue, WANG Ming, WANG Hua, XIAN Peng. Iron recovery from the leached solution of red mud through the application of oxalic acid [J]. International Journal of Mineral Processing, 2016, 157: 145–151. DOI: 10.1016/j.minpro.2016.11.001.

    Article  Google Scholar 

  21. LI Bo, XIE Ying, FAN Yan, LIU Chen, HE Hang. Recovery of aluminum from blast furnace slag of red mud ironmaking process [J]. Hydrometallurgy of China, 2015, 34(4): 328–330. (in Chinese)

    Google Scholar 

  22. WU Wen, LI Dong, ZHAO Zhi, CHEN Jian, ZHANG Feng, YIN Shao, QIAN Mei, BIAN Xue. Formation mechanism of micro emulsion on aluminum and lanthanum extraction in P507-HCl system [J]. Journal of Rare Earths, 2010, 28(s1): 174–178. DOI: 10.1016/S1002-0721(10)60314-6.

    Book  Google Scholar 

  23. VACHON P, TYAGI R D, AUCLAIR J C, WILKINSON K J. Chemical and biological leaching of aluminum from red mud [J]. Environmental Science & Technology, 1994, 28(1): 26–30. DOI: 10.1021/es00050a005.

    Article  Google Scholar 

  24. DITZE A, KONGOLO K. Recovery of scandium from magnesium, aluminum and iron scrap [J]. Hydrometallurgy, 1997, 44(1): 179–184. DOI: 10.1016/S0304-386X(96)00041-2.

    Article  Google Scholar 

  25. AKCIL A, AKHMADIYEVA N, ABDULVALIYEV R, ABHILASH, MESHRAM P. Overview on extraction and separation of rare earth elements from red mud: focus on scandium [J]. Mineral Processing and Extractive Metallurgy Review, 2017, 39(3): 1–7. DOI: 10.1080/08827508.2017. 1288116.

    Google Scholar 

  26. CHANG Yong, ZHAI Xiu, LI Bin, FU Yan. Removal of iron from acidic leach liquor of lateritic nickel ore by goethite precipitate [J]. Hydrometallurgy, 2010, 101(1, 2): 84–87. DOI: 10.1016/j.hydromet.2009.11.014.

    Article  Google Scholar 

  27. LIU Zhi, YIN Zhou, CHEN Yi, XIONG Li. Leaching kinetics of molybdenum from Ni-Mo ore in sulfuric acid solution with sodium peroxodisulfate as oxidant [J]. Journal of Central South University, 2015, 22(3): 874–879. DOI: 10.1007/s11771-015-2596-5.

    Article  Google Scholar 

  28. ZHU Qing. Stabilization on cadmium soil using modified silicon activated red mud based material [D]. Changsha: Hunan Agricultural University, 2016. (in Chinese)

    Google Scholar 

  29. CUI Li, CHENG Fang, ZHOU Jing. Behaviors and mechanism of iron extraction from chloride solutions using undiluted Cyphos IL 101 [J]. Industrial & Engineering Chemistry Research, 2015, 54(30): 7534–7542. DOI: 10.1021/acs.iecr.5b01546.

    Article  Google Scholar 

  30. HILL P S, SCHAUBLE E A, YOUNG E D. Effects of changing solution chemistry on Fe3+/Fe2+ isotope fractionation in aqueous Fe-Cl solutions [J]. Geochimica Et Cosmochimica Acta, 2010, 74(23): 6669–6689. DOI: 10.1016/j.gca.2010.08.038.

    Article  Google Scholar 

  31. HILL P S, SCHAUBLE E A, SHAHAR A, TONUI E, YOUNG E D. Experimental studies of equilibrium iron isotope fractionation in ferric aquo-chloro complexes [J]. Geochimica Et Cosmochimica Acta, 2009, 73(8): 2366–2381. DOI: 10.1016/j.gca.2009.01.016.

    Article  Google Scholar 

  32. LANGE N A, DEAN J A, Lange's Handbook of Chemistry (16th Edition) [M]. New York: McGraw-Hill, 2005: 687–688.

    Google Scholar 

  33. XU Guang, YUAN Cheng. Solvent extraction of rare earth elements [M]. Beijing: Science Press, 2010: 27–28. (in Chinese)

    Google Scholar 

  34. ZHU Zhao, ZHANG Wen, CHENG Chu. A literature review of titanium solvent extraction in chloride media [J]. Hydrometallurgy, 2011, 105(3, 4): 304–313. DOI: 10.1016/j.hydromet.2010.11.006.

    Article  Google Scholar 

  35. LI Yu-hua, LI Qing-gang, ZHANG Gui-qing, ZENG Li, CAO Zuo-ying, GUAN Wen-juan, WANG Liu-pei. Separation and recovery of scandium and titanium from spent sulfuric acid solution from the titanium dioxide production process [J]. Hydrometallurgy, 2018, 178: 1–6. DOI: 10.1016/j.hydromet.2018.01.019.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Kang-gen Zhou  (周康根).

Additional information

Foundation item: Project(21707167) supported by the Natural Science Foundation of China

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zhang, Xk., Zhou, Kg., Chen, W. et al. Recovery of iron and rare earth elements from red mud through an acid leaching-stepwise extraction approach. J. Cent. South Univ. 26, 458–466 (2019). https://doi.org/10.1007/s11771-019-4018-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11771-019-4018-6

Key words

关键词

Navigation