Skip to main content
Log in

Co2+-selective membrane electrode based on the Schiff Base NADS

  • Original Paper
  • Published:
Analytical and Bioanalytical Chemistry Aims and scope Submit manuscript

Abstract

A new PVC membrane electrode for cobalt(II) ions based on a recently synthesized Schiff base of 5-((4-nitrophenyl)azo)-N-(2′,4′-dimethoxyphenyl)salicylaldimine is reported. The electrode exhibits a Nernstian response for Co2+ ions over a wide concentration range (9.0×10−7–1.0×10−2 M) with a slope of 29(±1). The limit of detection is 8.0×10−7 M. The proposed sensor revealed good selectivities over a wide variety of other cations including hard and soft metals. This electrode could be used in a pH range of 3.5–6.0. It was used as an indicator electrode in potentiometric titrations of cobalt(II) ions and can be used in the direct determination of Co2+ in aqueous solutions.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1.
Fig. 2.
Fig. 3.
Fig. 4.

Similar content being viewed by others

References

  1. Wipfe HK, Pioda LAR, Stefanac Z, Simon W (1968) Helv Chim Acta 51:377

    PubMed  Google Scholar 

  2. Bühlmann P, Pretsch E, Bakker E (1998) Chem Rev 98:1593–1687

    PubMed  Google Scholar 

  3. Moody GJ, Saad BB, Thomas JDR (1988) Sel Electrode Rev 10:71–106

    CAS  Google Scholar 

  4. Umezawa Y (1990) (ed) Handbook of ion-selective electrodes: selectivity coefficients. CRC Press, Boca Raton

  5. Janata J, Josowicz M, Vanysek P, DeVaney DM (1998) Anal Chem 70:179R–208R

    CAS  Google Scholar 

  6. Janata J, Josowicz M, DeVaney DM (1994) Anal Chem 66:207R–228R

    CAS  PubMed  Google Scholar 

  7. Morf WF, Amman D, Bissig R, Pretsch E, Simon W (1979) Izatt RM, Christensen JJ (eds) Cation selectivity of neutral macrocyclic and non-macrocyclic complexing agents in membrane, vol 1. Wiley, pp 1–61

  8. Shih JS (1992) J Chin Chem Soc 39:551–559

    CAS  Google Scholar 

  9. Ochiai EI (1973) J Chem Educ 50:610–611

    CAS  PubMed  Google Scholar 

  10. Tajmir-Riahi HA (1983) Polyhedron 3:723

    Article  Google Scholar 

  11. Arena F, Floriana C, Chiesi-Villa A, Guastini C (1986) Inorg Chem 25:4589–4596

    CAS  Google Scholar 

  12. Calligaris M, Randaccio R (1987) Wilkinson G, Gillard RD, McCleverty (eds) Comprehensive coordination chemistry, vol 2, chap 20. Pergamon, Oxford

  13. Martell AE, Sawyer OT (1988) Oxygen complexes and oxygen activation by transition metals. Plenum Press, New York

  14. Atwood DA (1998) Coord Chem Rev 176:407–430

    Article  CAS  Google Scholar 

  15. Casaszar J, Morvay J, Herczeg O, (1985) Acta Phys Chem 31:717

    Google Scholar 

  16. Piecoki C, Simon J, Skoulios A, Guillon D, Weber P (1982) J Am Chem Soc 104:5254–5255

    Google Scholar 

  17. Ledoux L, Zyss Y (1997) Novel optical materials and applications. Wiley, New York

  18. Tian Y, Duan C, Zhao C, You X, Mak TCW, Zhang Z (1997) Inorg Chem 36:1247–1252

    Article  CAS  PubMed  Google Scholar 

  19. Rihter B, SriHari S, Hunter S, Masnovi J (1993) J Am Chem Soc 115:3918–3924

    CAS  Google Scholar 

  20. Zhang W, Loehach JL, Wilson SR, Jacobsen EN (1990) J Am Chem Soc 112:2801

    CAS  Google Scholar 

  21. Li Z, Conser KR, Jacobsen EN (1993) J Am Chem Soc 115:5326–5327

    CAS  Google Scholar 

  22. Fry AJ, Fry PF (1993) J Org Chem 58:3496–3501

    CAS  Google Scholar 

  23. Aurangzeb M, Hulme CE, McAuliffe CA, Richard RC, Watkinson A, Garcia-Deibe A, Bermejo MR, Sousa A (1992) J Chem Soc Chem Commun 1524

  24. Alizadeh N, Ershad S, Naeimi H, Sharghi H, Shamsipur M (1999) Fresenius J Anal Chem 365:511–515

    Article  CAS  Google Scholar 

  25. Yuan R, Chai YQ, Liu D, Gao D, Li JZ, Yu RQ (1993) Anal Chem 65:2572–2575

    CAS  Google Scholar 

  26. Mahajan RK, Kumar M, Sharma V, Kaur I (2001) Analyst 126:505-507

    Article  CAS  PubMed  Google Scholar 

  27. Brzozka Z (1988) Analyst 113:1803–1805

    CAS  Google Scholar 

  28. Ren K (1989) Talanta 36:767–771

    Article  CAS  Google Scholar 

  29. Ganjali MR, Poursaberi T, Haji-Agha Babaei L, Rouhani S, Yousefi M, Kargar-Razi M, Moghimi A, Aghabozorg H, Shamsipur M (2001) Anal Chim Acta 440:81–87

    Article  CAS  Google Scholar 

  30. Mashhadizadeh MH, Momeni A, Razavi R (2002) Anal Chim Acta 462:245–252

    Article  CAS  Google Scholar 

  31. Shamsipur M, Mashhadizadeh MH (2000) Fresenius J Anal Chem 367:246–249

    Article  CAS  PubMed  Google Scholar 

  32. Shamsipur M, Mashhadizadeh MH, Azimi G (2002) Sep Purif Technol 27:155–161

    Article  CAS  Google Scholar 

  33. Shamsipur M, Mashhadizadeh MH (2000) Sep Purif Technol 20:147–153

    Article  CAS  Google Scholar 

  34. Shamsipur M, Azimi G, Mashhadizadeh MH, Madaeni SS (2001) Anal Sci 17:491–494

    CAS  PubMed  Google Scholar 

  35. Shamsipur M, Mashhadizadeh MH (2001) Talanta 53:1065–1071

    Article  CAS  Google Scholar 

  36. Mashhadizadeh MH, Shamsipur M (1999) Anal Chim Acta 381:111–116

    Article  Google Scholar 

  37. Mashhadizadeh MH, Mostafavi A, Razavi R, Shamsipur M (2002) Sensors Actuators B 86:222–228

    Article  Google Scholar 

  38. Jalali-Heravi M, Khandar AA, Sheikhshoaie I (1999) Spectrochim Acta 55:2537

    Article  Google Scholar 

  39. Kamata S, Bhale A, Fukunaga Y, Murata H (1988) Anal Chem 60:2464–2467

    CAS  Google Scholar 

  40. Bakker E, Bühlmann P, Pretsch E (1997) Chem Rev 97:3083–3132

    Article  CAS  Google Scholar 

  41. Yang X, Kumar N, Chi H, Hibbert DB, Alexander PNW (1997) Electroanalysis 9:549–553

    CAS  Google Scholar 

  42. Gupta VK, Jain S, Khurana U (1997) Electroanalysis 9:478–480

    CAS  Google Scholar 

  43. Cobben PLHM, Egbrink RJM, Bomer JB, Bergveld P, Verboon W, Reinhoudt DN (1992) J Am Chem Soc 114:10573–10582

    CAS  Google Scholar 

  44. Schneider K, Hofstetter M, Pretsch E, Amman D, Simon W (1980) Helv Chim Acta 63:217–221

    CAS  Google Scholar 

  45. Kamata S, Yamasaki K, Higo M, Bhale A, Fukunaga Y (1988) Analyst 113:45–48

    CAS  PubMed  Google Scholar 

  46. Amman D, Bissig R, Guggi M, Pretsch E, Simon W, Borowitz IJ, Weiss L (1975) Helv Chim Acta 58:1535–1536

    Google Scholar 

  47. Anker P, Wieland E, Amman D, Dohner RE, Asper R, Simon W (1981) Anal Chem 53:1970–1974

    CAS  PubMed  Google Scholar 

  48. Armstrong RD, Todd M (1988) J Electroanal Chem 257:161–165

    Article  CAS  Google Scholar 

  49. Verpoorte EMJ, Chan ADC, Harrison D (1993) Electroanalysis 5:845

    CAS  Google Scholar 

  50. Amman D, Pretsch E, Simon W, Lindner E, Bezegh A, Pungor E (1985) Anal Chim Acta 171:119–124

    Article  Google Scholar 

  51. Eugster R, Gehring PM, Morf WE, Spichiger UE, Simon W (1991) Anal Chem 63:2285–2289

    CAS  Google Scholar 

  52. Rostazin T, Bakker E, Suzuki K, Simon W (1993) Anal Chim Acta 280:197–208

    CAS  Google Scholar 

  53. Schaller U, Bakker E, Spichiger UE, Pretsch E (1994) Anal Chem 66:391–398

    CAS  Google Scholar 

  54. Gehring PM, Morf WE, Welti M, Pretsch E, Simon W (1990) Helv Chim Acta 73:203–212

    CAS  Google Scholar 

  55. Gadzekpo VPY, Christian GD (1984) Anal Chim Acta 164:279–284

    Article  CAS  Google Scholar 

  56. Umezawa Y, Bühlmann P, Umezawa K, Tohdo K, Amemiya S (2000) Pure Appl Chem 72:1851–2082

    CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Mohammad Hossein Mashhadizadeh.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Mashhadizadeh, M.H., Sheikhshoaie, I. Co2+-selective membrane electrode based on the Schiff Base NADS. Anal Bioanal Chem 375, 708–712 (2003). https://doi.org/10.1007/s00216-002-1744-6

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00216-002-1744-6

Keywords

Navigation