Skip to main content
Log in

Mn–graphene single-atom catalyst evaluated for CO oxidation by computational screening

  • Regular Article
  • Published:
Theoretical Chemistry Accounts Aims and scope Submit manuscript

Abstract

The non-noble transition metals (Sc, Ti, V, Cr, Mn) embedded in graphene as single-atom catalysts have been comprehensively screened for CO oxidation using density functional theory calculations. Among these options, Mn–graphene is predicted to have superior activity for CO oxidation. This conclusion is based on the binding energy between metal atom and graphene substrate, diffusion barrier of metal atom on graphene, and reaction barrier based on the transition state analysis. On the other hand, Sc–, Ti–, V–, and Cr–graphene bind O2 too strongly. This will lead to catalyst poisoning by O for these systems. We expect that Mn–graphene should be straight forward to fabricate experimentally, and predict that it will be a novel, stable, and efficient single-atom catalyst. For Mn–graphene, the Langmuir–Hinshelwood (LH) and Eley–Rideal (ER) mechanisms of CO oxidation have been investigated. However, the CO molecules cannot interact with surface activated O2 on graphene to form carbonate-like CO3 complexes or other intermediates. This demonstrates that CO oxidation will not proceed via the ER mechanism. The reaction mechanism for catalysis of CO oxidation occurs in two steps: The LH mechanism CO + O2→ OCOO → CO2 + O followed by the ER mechanism CO + O → CO2. The energy barriers are 0.57–0.69 eV and 0.08 eV, respectively. These barriers are comparable to or smaller than those for Ni and Mo, indicating high activity. Brief molecular dynamics simulations were also performed on this system. We predict that Mn–graphene can be used as a single-atom catalyst for CO oxidation over a broad range of temperatures. The present work should inspire experimental work on synthesis of novel single-atom catalysts.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  1. Kimble ML, Castleman AW, Mitrić R, Bürgel C, Bonačić-Koutecký V (2004) J Am Chem Soc 126:2526

    Article  CAS  PubMed  Google Scholar 

  2. Lopez N, Nørskov JK (2002) J Am Chem Soc 124:11262

    Article  CAS  PubMed  Google Scholar 

  3. Liu Z-P, Hu P, Alavi A (2002) J Am Chem Soc 124:14770

    Article  CAS  PubMed  Google Scholar 

  4. Oh S-H, Hoflund GB (2007) J Catal 245:35

    Article  CAS  Google Scholar 

  5. Lee SW, Chen S, Sheng W, Yabuuchi N, Kim Y-T, Mitani T, Vescovo E, Shao-Horn Y (2009) J Am Chem Soc 131:15669

    Article  CAS  PubMed  Google Scholar 

  6. Ackermann MD, Pedersen TM, Hendriksen BLM, Robach O, Bobaru SC, Popa I, Quiros C, Kim H, Hammer B, Ferrer S, Frenken JWM (2005) Phys Rev Lett 95:255505

    Article  CAS  PubMed  Google Scholar 

  7. Gong X-Q, Liu Z-P, Raval R, Hu P (2004) J Am Chem Soc 126:8

    Article  CAS  PubMed  Google Scholar 

  8. Zhang CJ, Hu P (2001) J Am Chem Soc 123:1166

    Article  CAS  PubMed  Google Scholar 

  9. Su H-Y, Yang M-M, Bao X-H, Li W-X (2008) J Phys Chem C 112:17303

    Article  CAS  Google Scholar 

  10. Liu Z-P, Gong X-Q, Kohanoff J, Sanchez C, Hu P (2003) Phys Rev Lett 91:266102

    Article  CAS  PubMed  Google Scholar 

  11. Gao Y, Shao N, Pei Y, Zeng XC (2010) Nano Lett 10:1055

    Article  CAS  PubMed  Google Scholar 

  12. Qiao B, Wang A, Yang X, Allard LF, Jiang Z, Cui Y, Liu J, Li J, Zhang T (2011) Nat Chem 3:634

    Article  CAS  PubMed  Google Scholar 

  13. Yang X-F, Wang A, Qiao B, Li J, Liu J, Zhang T (2013) Acc Chem Res 46:1740

    Article  CAS  PubMed  Google Scholar 

  14. Lu Y-H, Zhou M, Zhang C, Feng Y-P (2009) J Phys Chem C 113:20157

    Article  CAS  Google Scholar 

  15. Li Y, Zhou Z, Yu G, Chen W, Chen Z (2010) J Phys Chem C 114:6252

    Article  CAS  Google Scholar 

  16. Liu X, Sui Y, Duan T, Meng C, Han Y (2014) Phys Chem Chem Phys 16:23584

    Article  CAS  PubMed  Google Scholar 

  17. Esrafili MD, Nematollahi P, Nurazar R (2016) Superlattices Microstruct 92:60

    Article  CAS  Google Scholar 

  18. Tang Y, Dai X, Yang Z, Liu Z, Pan L, Ma D, Lu Z (2014) Carbon 71:139

    Article  CAS  Google Scholar 

  19. Song EH, Wen Z, Jiang Q (2011) J Phys Chem C 115:3678

    Article  CAS  Google Scholar 

  20. Tang Y, Liu Z, Dai X, Yang Z, Chen W, Ma D, Lu Z (2014) Appl Surf Sci 308:402

    Article  CAS  Google Scholar 

  21. Esrafili MD, Saeidi N (2015) Physica E 74:382

    Article  CAS  Google Scholar 

  22. Esrafili MD, Nematollahi P, Abdollahpour H (2016) Appl Surf Sci 378:418

    Article  CAS  Google Scholar 

  23. Zhao J-X, Chen Y, Fu H-G (2012) Theor Chem Acc 131:1243

    Article  CAS  Google Scholar 

  24. Jiang QG, Ao ZM, Li S, Wen Z (2014) RSC Adv 4:20290

    Article  CAS  Google Scholar 

  25. Xu X-Y, Li J, Xu H, Xu X, Zhao C (2016) New J Chem 40:9361

    Article  CAS  Google Scholar 

  26. Tang Y, Pan L, Chen W, Li C, Shen Z, Dai X (2015) Appl Phys A 119:475

    Article  CAS  Google Scholar 

  27. Tang Y, Yang Z, Dai X (2012) Phys Chem Chem Phys 14:16566

    Article  CAS  PubMed  Google Scholar 

  28. Tang Y, Ma D, Chen W, Dai X (2015) Sens Actuators B 211:227

    Article  CAS  Google Scholar 

  29. Delley B (1990) J Chem Phys 92:508

    Article  CAS  Google Scholar 

  30. Perdew JP, Burke K, Ernzerhof M (1996) Phys Rev Lett 77:3865

    Article  CAS  PubMed  Google Scholar 

  31. Delley B (2002) Phys Rev B 66:155125

    Article  CAS  Google Scholar 

  32. Halgren TA, Lipscomb WN (1977) Chem Phys Lett 49:225

    Article  CAS  Google Scholar 

  33. Henkelman G, Jónsson H (2000) J Chem Phys 113:9978

    Article  CAS  Google Scholar 

  34. Clark SJ, Segall MD, Pickard CJ, Hasnip PJ, Probert MIJ, Refson K, Payne MC (2005) Z Kristallogr 220:567

    CAS  Google Scholar 

  35. Ganz E, Ganz AB, Yang L-M, Dornfeld M (2017) Phys Chem Chem Phys 19:3756

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  36. Chu M, Liu X, Sui Y, Luo J, Meng C (2015) Molecules 20:19540

    Article  CAS  PubMed  Google Scholar 

  37. Tang Y, Zhou J, Shen Z, Chen W, Li C, Dai X (2016) RSC Adv 6:93985

    Article  CAS  Google Scholar 

  38. Krasheninnikov AV, Lehtinen PO, Foster AS, Pyykkö P, Nieminen RM (2009) Phys Rev Lett 102:126807

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

L. X. and L.-M. Y. gratefully acknowledges the support from National Natural Science Foundation of China (Grant No. 21673087), startup fund (2006013118 and 3004013105) and independent innovation research fund (0118013090) from Huazhong University of Science and Technology. We thank the Minnesota Supercomputing Institute (MSI) at the University of Minnesota for supercomputing resources. The DFT calculations were carried out on the Mesabi and Itasca supercomputers at the MSI.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Li-Ming Yang.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (DOCX 1035 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Xu, L., Yang, LM. & Ganz, E. Mn–graphene single-atom catalyst evaluated for CO oxidation by computational screening. Theor Chem Acc 137, 98 (2018). https://doi.org/10.1007/s00214-018-2270-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s00214-018-2270-8

Keywords

Navigation