Skip to main content
Log in

Promethium-doped silicon clusters PmSi n (n = 3–10) and their anions: structures, thermochemistry, electron affinities and magnetic moments

  • Regular Article
  • Published:
Theoretical Chemistry Accounts Aims and scope Submit manuscript

Abstract

The equilibrium geometries, electronic structures and electronic properties of PmSi n (n = 3–10) clusters were systematically investigated using the ABCluster global search technique combined with density functional methods. The results revealed that the most stable structure of neutral PmSi n and their anions can be viewed as replacing a Si atom of the ground state structure of Si n+1 with a Pm atom. The adiabatic electron affinities of PmSi n are evaluated, and they differ little from those of SmSi n and EuSi n . Analyses of HOMO–LUMO gaps showed that introducing Pm atom to Si cluster can significantly improve photochemical reactivity of the cluster. And the improved effects are as good as those of the introducing Sm and Eu atom to Si cluster. The NPA calculations indicated that the 4f electrons of Pm atom in PmSi n (n = 3–10) clusters hardly participate in bonding and provide the total magnetic moments. Dissociation energy (DE) of rare earth metal (REM) atom from the lowest energy structure of REMSi n (n = 3–10) and their anions was calculated. The DEs of PmSi n , SmSi n and EuSi n are nearly identical. The DEs of PmSi n , SmSi n and EuSi n are also nearly equal, and they are smaller than those of HoSi n and PrSi n .

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  1. Ohara M, Miyajima K, Pramann A, Nakajima A, Kaya K (2002) Geometric and electronic structures of terbium–silicon mixed clusters (TbSi n , 6 ≤ n≤16). J Phys Chem A 106:3702–3705

    Article  CAS  Google Scholar 

  2. Koyasu K, Atobe J, Furuse S, Nakajima A (2008) Anion photoelectron spectroscopy of transition metal and lanthanide metal-silicon clusters: MSi n (n = 6-20). J Chem Phys 129:214301

    Article  Google Scholar 

  3. Grubisic A, Wang HP, Ko YJ, Bowen KH (2008) Photoelectron spectroscopy of europium-silicon clusters anions, EuSi n (3 ≤ n≤17). J Chem Phys 129:054302

    Article  Google Scholar 

  4. Grubisic A, Ko YJ, Wang HP, Bowen KH (2009) Photoelectron spectroscopy of Lanthanide-silicon cluster anions LnSi n (3 ≤ n≤13, Ln = Ho, Gd, Pr, Sm, Eu, Yb): prospect for magnetic silicon-based clusters. J Am Chem Soc 131:10783–10790

    Article  CAS  Google Scholar 

  5. Han JG, Hagelberg F (2009) Recent progress in the computational study of silicon and germanium clusters with transition metal impurities. J Comput Theor Nanosci 6(2):257–269

    Article  CAS  Google Scholar 

  6. Zhao RN, Yuan Y, Han JG, Duan Y (2014) Actinide elements and germanium: a first-principles density functional theory investigation of the electronic and magnetic properties of ApGe (Ap = Ac−Lr) diaotms. RSC Adv 4:59331–59337

    Article  CAS  Google Scholar 

  7. Hang TD, Hung HM, Nguyen MT (2016) Structural assignment, and electronic and magnetic properties of lanthanide metal doped silicon heptamers Si7M0/−with M = Pr, Gd and Ho†. Phys Chem Chem Phys 18:31054

    Article  CAS  Google Scholar 

  8. Li XJ, Yan ZJ, Li SN (2016) The nature of structure and bonding between transition metal and mixed Si–Ge Tetramers: a 20-electron superatom system. J Comput Chem 37:2316–2323

    Article  CAS  Google Scholar 

  9. Pak C, Rienstra-Kiracofe JC, Schaefer HF (2000) Electron affinities of silicon hydrides: SiHn (n = 0–4) and Si2Hn (n = 0–6). J Phys Chem A 104:11232–11242

    Article  CAS  Google Scholar 

  10. Li XJ, Claes P, Haertelt M, Lievens P, Janssens E, Fielicke A (2016) Structural determination of niobium-doped silicon clusters by far-infrared spectroscopy and theory. Phys Chem Chem Phys 18:6291

    Article  CAS  Google Scholar 

  11. Zhao RN, Han JG (2014) Geometrical stabilities and electronic properties of Si n (n = 12–20) clusters with rare earth holmium impurity: a density functional investigation. RSC Adv 4:64410–64418

    Article  CAS  Google Scholar 

  12. Beck SM (1987) Studies of silicon cluster-metal atom compound formation in a supersonic molecular beam. J Chem Phys 87(7):4233–4234

    Article  CAS  Google Scholar 

  13. Koyasu K, Akutsu M, Mitsui M, Nakajima A (2005) Selective Formation of MSi16 (M = Sc, Ti, and V). J Am Chem Soc 127:4998–4999

    Article  CAS  Google Scholar 

  14. Huang XM, Xu HG, Lu SJ, Su Y, King RB, Zhao JJ, Zheng WJ (2004) Discovery of a silicon-based ferromagnetic wheel structure in VxSi12 (x = 1–3) clusters: photoelectron spectroscopy and density functional theory investigation†. Nanoscale 6:14617–14621

    Article  Google Scholar 

  15. Li XJ, Han Q, Yang XH, Song RJ, Song LM (2016) Modification of alkali metals on silicon-based nanoclusters: an enhanced nonlinear optical response 659:93–99

    CAS  Google Scholar 

  16. Hou LY, Yang JC, Liu Yuming (2016) Reexamination of structures, stabilities, and electronic properties of holmium-doped silicon clusters HoSin (n = 12–20). J Mol Model 22:193

    Article  Google Scholar 

  17. Qi P, Jiang S (2008) Growth behavior of La@Si n (n = 1–21) metal-encapsulated clusters. J Chem Phys 128:084711

    Article  Google Scholar 

  18. Cao TT, Feng XJ, Zhao LX, Liang X, Lei YM, Luo YH (2008) Structure and magnetic properties of La-doped Si n (n = 1–12,24) clusters: a density functional theory investigation. Eur Phys J D 49:343–351

    Article  CAS  Google Scholar 

  19. Feng YT, Yang JC (2017) Stability and electronic properties of praseodymium-doped silicon clusters PrSin (n = 12–21). J Mol Model 23:180

    Article  Google Scholar 

  20. Li CG, Pan LJ, Shao P, Ding LP, Feng HT, Luo DB, Liu B (2015) Structures, stabilities, and electronic properties of the neutral and anionic SinSmλ (n = 1–9, λ = 0, − 1) clusters: comparison with pure silicon clusters. Theor Chem Acc 134:34

    Article  Google Scholar 

  21. Zhao GF, Sun JM, Gu YZ, Wang YX (2009) Density-functional study of structural, electronic, and magnetic properties of the EuSi n (n = 1–13) clusters. J Chem Phys 131:114312

    Article  Google Scholar 

  22. Wang J, Liu Y, Li YC (2010) Magnetic silicon fullerene. Phys Chem Chem Phys 12:11428–11431

    Article  CAS  Google Scholar 

  23. Liu TG, Zhao GF, Wang YX (2011) Structural, electronic and magnetic properties of GdSi n (n = 1–17) clusters: a density functional study. Phys Lett A 375:1120–1127

    Article  CAS  Google Scholar 

  24. Liu TG, Zhang WQ, Li YL (2014) First-principles study on the structure, electronic and magnetic properties of HoSi n (n = 1–12, 20) clusters. Front Phys 9:210–218

    Article  CAS  Google Scholar 

  25. Zhao RN, Ren ZY, Guo P, Bai JT, Zhang CH, Han JG (2006) Geometries and electronic properties of the neutral and charged rare earth Yb-doped Si n (n = 1–6) clusters: a relativistic density functional investigation. J Phys Chem A 110:4071–4079

    Article  CAS  Google Scholar 

  26. Zhao RN, Han JG, Bai JT, Liu FY, Sheng LS (2010) The medium-sized charged YbSi ± n (n = 7–13) clusters: a relativistic computational investigation. Chem Phys 378:82–87

    Article  CAS  Google Scholar 

  27. Zhao RN, Han JG, Bai JT, Liu FY, Sheng LS (2010) A relativistic density functional study of Si n (n = 7–13) clusters with rare earth ytterbium impurity. Chem Phys 372:89–95

    Article  CAS  Google Scholar 

  28. Cao TT, Zhao LX, Feng XJ, Lei YM, Luo YH (2009) Structural and electronic properties of LuSi n (n = 1–12) clusters: a density functional theory investigation. J Mol Struct THEOCHEM 895:148–155

    Article  CAS  Google Scholar 

  29. Feng YT, Yang JC, Liu YM (2016) Study on the structures and properties of praseodymium-doped silicon clusters PrSin (n = 3–9) and their anions with density functional schemes. Theor Chem Acc 135:258

    Article  Google Scholar 

  30. Xie XH, Hao DS, Liu YM, Yang JC (2015) Samarium doped silicon clusters SmSi n (n = 3–10) and their anions: structures, thermochemistry, electron affinities, and magnetic moments. Comput Theor Chem 1074:1–8

    Article  CAS  Google Scholar 

  31. Yang JC, Wang J, Hao YR (2015) Europium-doped silicon clusters EuSi n (n = 3–11) and their anions: structures, thermochemistry, electron affinities, and magnetic moments. Theor Chem Acc 134:81

    Article  Google Scholar 

  32. Yang JC, Feng YT, Xie XH, Wu HW, Liu YM (2016) Gadolinium-doped silicon clusters GdSin (n = 2–9) and their anions: structures, thermochemistry, electron affinities, and magnetic moments. Theor Chem Acc 135:204

    Article  Google Scholar 

  33. Hou LY, Yang JC, Liu YM (2017) Density-functional study of the structures and properties of holmium-doped silicon clusters HoSin (n = 3–9) and their anions. J Mol Model 23:117

    Article  Google Scholar 

  34. Xie XH, Hao DS, Yang JC (2015) Ytterbium doped silicon clusters YbSi n (n = 4-10) and their anions: structures, thermochemistry, and electron affinities. Chem Phys 461:11–19

    Article  CAS  Google Scholar 

  35. He S, Yang JC (2017) Study on structure and property of lutetium introduced silicon clusters LuSin (n = 3–10) and their anions with density functional theory. J Clust Sci. doi:10.1007/s10876-017-1225-x

    Google Scholar 

  36. Schwabe T, Grimme S (2006) Towards chemical accuracy for the thermodynamics of large molecules: new hybrid density functionals including non-local correlation effects. Phys Chem Chem Phys 8:4398–4401

    Article  CAS  Google Scholar 

  37. Zhang J, Dolg M (2015) ABCluster: the artificial bee colony algorithm for cluster global optimization. Phys Chem Chem Phys 17:24173–24181

    Article  CAS  Google Scholar 

  38. Frisch MJ, Trucks GW, Schlegel HB, Scuseria GE, Robb MA, Cheeseman JR, Scalmani G, Barone V, Mennucci B, Petersson GA, Nakatsuji H, Caricato M, Li X, Hratchian HP, Izmaylov AF, Bloino J, Zheng G, Sonnenberg JL, Hada M, Ehara M, Toyota K, Fukuda R, Hasegawa J, Ishida M, Nakajima T, Honda Y, Kitao O, Nakai H, Vreven T, JA Montgomery Jr, Peralta JE, Ogliaro F, Bearpark M, Heyd JJ, Brothers E, Kudin KN, Staroverov VN, Keith T, Kobayashi R, Normand J, Raghavachari K, Rendell A, Burant JC, Iyengar SS, Tomasi J, Cossi M, Rega N, Millam JM, Klene M, Knox JE, Cross JB, Bakken V, Adamo C, Jaramillo J, Gomperts R, Stratmann RE, Yazyev O, Austin AJ, Cammi R, Pomelli C, Ochterski JW, Martin RL, Morokuma K, Zakrzewski VG, Voth GA, Salvador P, Dannenberg JJ, Dapprich S, Daniels AD, Farkas Ö, Foresman JB, Ortiz JV, Cioslowski J, Fox DJ (2010) Gaussian 09 revision C.01. Gaussian Inc, Wallingford

    Google Scholar 

  39. Staroverov VN, Scuseria GE, Tao J (2003) Comparative assessment of a new nonempirical density functional: molecules and hydrogen-bonded complexes. J Chem Phys 119:12129–12137

    Article  CAS  Google Scholar 

  40. Dolg M, Stoll H, Savin A, Preuss H (1989) Energy-adjusted pseudopotentials for the rare earth elements. Theor Chim Acta 75:173–194

    Article  CAS  Google Scholar 

  41. Feller D (1996) The role of databases in support of computational chemistry calculations. J Comput Chem 17:1571–1586

    Article  CAS  Google Scholar 

  42. Schuchardt KL, Didier BT, Elsethagen T (2007) Basis set exchange: a community database for computational sciences. J Chem Inf Model 47(3):1045–1052

    Article  CAS  Google Scholar 

  43. Woon DE, Dunning TH (1993) Gaussian basis sets for use in correlated molecular calculations. II. The atoms aluminum through argon. J Chem Phys 98:1358–1371

    Article  CAS  Google Scholar 

  44. Buchachenko AA, Chalasiński G, Szeześniak MM (2007) Diffuse basis functions for small-core relativistic pseudopotential basis sets and static dipole polarizabilities of selected lanthanides La, Sm, Eu, Tm and Yb. Struct Chem 18:769–772

    Article  CAS  Google Scholar 

  45. Cao X, Dolg M (2002) Segmented contraction scheme for small-core lanthanide pseudopotential basis sets. J Mol Struct THEOCHEM 581:139–147

    Article  CAS  Google Scholar 

  46. Raghavachari K (1986) Theoretical study of small silicon clusters: equilibrium geometries and electronic structures of Sin (n = 2–7,10). J Chem Phys 184:5672–5686

    Article  Google Scholar 

  47. Yang JC, Xu WG, Xiao WS (2005) The small silicon clusters Sin, (n = 2–10) and their anions: structures, themochemistry, and electron affinities. J Mol Struct (THEOCHEM) 719:89–102

    Article  CAS  Google Scholar 

  48. Zhu X, Zeng XC (2003) Structures and stabilities of small silicon clusters: Ab initio molecular-orbital calculations of Si7–Si11. J Chem Phys 118:3558–3570

    Article  CAS  Google Scholar 

Download references

Acknowledgements

This study was supported by the National Natural Science Foundation of China (Grant No. 21263010), by Program for Innovative Research Team in Universities of Inner Mongolia Autonomous Region (Gran No. NMGIRT-A1603), by the Inner Mongolia Natural Science Foundation (Grant No. 2015MS0216), and by the Inner Mongolia institutions of higher learning scientific research projects (Grant No. NJZY16419).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jucai Yang.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

He, S., Yang, J. Promethium-doped silicon clusters PmSi n (n = 3–10) and their anions: structures, thermochemistry, electron affinities and magnetic moments. Theor Chem Acc 136, 93 (2017). https://doi.org/10.1007/s00214-017-2126-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s00214-017-2126-7

Keywords

Navigation