Skip to main content

Advertisement

Log in

Can 2-pyrone derivative act as an effective π-linker for dye-sensitized solar cells: a theoretical study?

  • Regular Article
  • Published:
Theoretical Chemistry Accounts Aims and scope Submit manuscript

Abstract

Thiophene and derivatives have been broadly used in metal-free organic dyes as π-bridge in the past 10 years. However, the relatively sharp and narrow visible absorption bands of these organic dyes not only severely attenuated the light capture capability but also restrict the efficiency. In this contribution, to design efficient sensitizers for dye-sensitized solar cells, a series of triphenylamine (TPA) dyes with 2-pyrone as the π-bridge are investigated using the density functional theory and time-dependent density functional theory approaches. The results show that the designed dyes have smaller gap between the highest occupied molecular orbital and the lowest unoccupied molecular orbital, the absorption bands are greatly bathochromic-shifted by at least 39 nm and the light-harvesting efficiencies are improved compared to the experimentally efficient sensitizer T with thiophene as the π-bridge. The calculated values of free energy change ΔG inject for all the designed dyes are very negative, which favors electron injection from the excited-state dye to the TiO2 conduction band edge. Our simulations show that the sensitizers studied here are strongly adsorbed to the TiO2 cluster. During light excitation, electrons are transferred from the TPA group through the π-spacer to the surface-bound cyanoacrylate, facilitating electron injection to the TiO2 nanoclusters. Our calculations indicate that the newly designed dyes will be promising candidates for the future solar cell applications.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

References

  1. O’Regan B, Grätzel M (1991) Nature 353:737–740

    Article  Google Scholar 

  2. Hagfeldt A, Grätzel M (1995) Chem Rev 95:49–68

    Article  CAS  Google Scholar 

  3. Grätzel M (2001) Nature 414:338–344

    Article  Google Scholar 

  4. Hamann TW, Jensen RA, Martinson ABF, Ryswyk HV, Hupp JT (2008) Energy Environ Sci 1:66–78

    Article  CAS  Google Scholar 

  5. Preat J, Jacquemin D, Perpète EA (2010) Energy Environ Sci 3:891–904

    Article  CAS  Google Scholar 

  6. Hagfeldt A, Boschloo G, Sun L, Kloo L, Pettersson H (2010) Chem Rev 110:6595–6663

    Article  CAS  Google Scholar 

  7. Nazeeruddin MK, Pechy P, Renouard T, Zakeeruddin SM, Humphry-Baker R, Comte P, Liska P, Cevey L, Costa E, Shklover V, Spiccia L, Deacon GB, Bignozzi CA, Grätzel M (2001) J Am Chem Soc 123:1613–1624

    Article  CAS  Google Scholar 

  8. Nazeeruddin MK, De Angelis F, Fantacci S, Selloni A, Viscardi G, Liska P, Ito S, Takeru B, Grätzel M (2005) J Am Chem Soc 127:16835–16847

    Article  CAS  Google Scholar 

  9. Gao F, Wang Y, Zhang J, Shi D, Wang M, Humphry-Baker R, Wang P, Zakeeruddin SM, Grätzel M (2008) Chem Commun 44:2635–2637

    Article  Google Scholar 

  10. Chen C-Y, Wang M, Li J-Y, Pootrakulchote N, Alibabaei L, Ngoc-le C, Decoppet J-D, Tsai J-H, Grätzel C, Wu C-G, Zakeeruddin SM, Grätzel M (2009) ACS Nano 3:3103–3109

    Article  CAS  Google Scholar 

  11. Zhang GL, Bala H, Cheng YM, Shi D, Lv XJ, Yu QJ, Wang P (2009) Chem Commun 2198–2200

  12. Yella A, Lee H-W, Tsao HN, Yi C, Chandiran AK, Nazeeruddin MK, Diau EW-G, Yeh C-Y, Zakeeruddin SM, Grätzel M (2011) Science 334:629–634

    Article  CAS  Google Scholar 

  13. Wang ZS, Cui Y, Hara K, Dan-Oh Y, Kasada C, Shinpo A (2007) Adv Mater 19:1138–1141

    Article  CAS  Google Scholar 

  14. Horiuchi T, Miura H, Sumioka K, Uchida S (2004) J Am Chem Soc 126:12218–12219

    Article  CAS  Google Scholar 

  15. Kitamura T, Ikeda M, Shigaki K, Inoue T, Anderson NA, Ai X, Lian TQ, Yanagida S (2004) Chem Mater 16:1806–1812

    Article  CAS  Google Scholar 

  16. Li C, Yum JH, Moon SJ, Herrmann A, Eickemeyer F, Pschirer NG, Erk P, Schoeboom J, Mullen K, Grätzel M, Nazeeruddin MK (2008) ChemSusChem 1:615–618

    Article  CAS  Google Scholar 

  17. Hara K, Horiguchi T, Kinoshita T, Sayama K, Sugihara H, Arakawa H (2000) Sol Energy Mater Sol Cells 64:115–134

    Article  CAS  Google Scholar 

  18. Hagberg DP, Yum JH, Lee HJ, De Angelis F, Marinado T, Karlsson KM, Humphry-Baker R, Sun L, Hagfeldt A, Grätzel M, Nazeeruddin MK (2008) J Am Chem Soc 130:6259–6266

    Article  CAS  Google Scholar 

  19. Akhtaruzzaman M, Islam A, Yang F, Asao N, Kwon E, Singh SP, Han L, Yamamoto Y (2011) Chem Commun 47:12400–12402

    Article  CAS  Google Scholar 

  20. Lin JT, Chen P-C, Yen Y-S, Hsu Y-C, Chou H-H, Yeh M-CP (2009) Org Lett 11:97–100

    Article  CAS  Google Scholar 

  21. Xiao D, Martini LA, Snoeberger RC III, Crabtree RH, Batista VS (2011) J Am Chem Soc 133:9014–9022

    Article  CAS  Google Scholar 

  22. Christie RM, Morgan KM, Islam MS (2008) Dyes Pigments 76:741–747

    Article  CAS  Google Scholar 

  23. Puerto ED, Domingo C, Sanchez-Cortes S, García-Ramos JV, Aroca RF (2011) J Phys Chem C 115:16838–16843

    Article  Google Scholar 

  24. Mizuguchi J (2004) J Phys Chem B 108:8926–8930

    Article  CAS  Google Scholar 

  25. Thalacker C, Röger C, Würthner F (2006) J Org Chem 71:8098–8105

    Article  CAS  Google Scholar 

  26. Ferreira ES, Hulme AN, McNab H, Quye A (2004) Chem Soc Rev 33:329–336

    Article  CAS  Google Scholar 

  27. Seixas de Melo J, Rondão R, Burrows HD, Melo MJ, Navaratnam S, Edge R, Voss G (2006) J Phys Chem A 110:13653–13661

    Article  CAS  Google Scholar 

  28. Hara K, Sato T, Katoh R, Furube A, Ohga Y, Shinpo A, Suga S, Sayama K, Sugihara H, Arakawa H (2003) J Phys Chem B 107:597–606

    Article  CAS  Google Scholar 

  29. Wang Z-S, Cui Y, Dan-oh Y, Kasada C, Shinpo A, Hara K (2007) J Phys Chem C 111:7224–7230

    Article  CAS  Google Scholar 

  30. Seo KD, Choi IT, Park YG, Kang S, Lee JY, Kim HK (2012) Dyes Pigments 94:469–474

    Article  CAS  Google Scholar 

  31. Bochkov AY, Akchurin IO, Dyachenko OA, Traven VF (2013) Chem Commun 49:11653–11655

    Article  CAS  Google Scholar 

  32. Frisch MJ, Trucks GW, Schlegel HB, Scuseria GE, Robb MA, Cheeseman JR, Scalmani G, Barone V, Mennucci B, Petersson GA, Nakatsuji H, Caricato M, Li X, Hratchian HP, Izmaylov AF, Bloino J, Zheng G, Sonnenberg JL, Hada M, Ehara M, Toyota K, Fukuda R, Hasegawa J, Ishida M, Nakajima T, Honda Y, Kitao O, Nakai H, Vreven T, Montgomery JJA, Peralta JE, Ogliaro F, Bearpark M, Heyd JJ, Brothers E, Kudin KN, Staroverov VN, Kobayashi R, Normand J, Raghavachari K, Rendell A, Burant JC, Iyengar SS, Tomasi J, Cossi M, Rega N, Millam NJ, Klene M, Knox JE, Cross JB, Bakken V, Adamo C, Jaramillo J, Gomperts R, Stratmann RE, Yazyev O, Austin AJ, Cammi R, Pomelli C, Ochterski JW, Martin RL, Morokuma K, Zakrzewski VG, Voth GA, Salvador P, Dannenberg JJ, Dapprich S, Daniels AD, Farkas Ö, Foresman JB, Ortiz JV, Cioslowski J, Fox DJ (2009) Gaussian 09, Revision A.02. Gaussian Inc., Wallingford

    Google Scholar 

  33. Becke AD (1993) J Chem Phys 98:5648–5652

    Article  CAS  Google Scholar 

  34. Lee C, Yang W, Parr RG (1998) Phys Rev B 37:785–789

    Article  Google Scholar 

  35. Hariharan PC, Pople JA (1973) JA. Theor Chim Acta 28:213–222

    Article  CAS  Google Scholar 

  36. Hay PJ, Wadt WR (1985) J Chem Phys 82:270–283

    Article  CAS  Google Scholar 

  37. Hay PJ, Wadt WR (1985) J Chem Phys 82:284–298

    Article  Google Scholar 

  38. Hay PJ, Wadt WR (1985) J Chem Phys 82:299–310

    Article  CAS  Google Scholar 

  39. Preat J, Michaux C, Jacquemin D, Perpète EA (2009) J Phys Chem C 113:16821–16833

    Article  CAS  Google Scholar 

  40. Pastore M, Mosconi E, De Angelis F, Gräzel M (2010) J Phys Chem C 114:7205–7212

    Article  CAS  Google Scholar 

  41. Yanai T, Tew DP, Handy NC (2004) Chem Phys Lett 393:51–57

    Article  CAS  Google Scholar 

  42. Chai J-D, Head-Gordon M (2008) Phys Chem Chem Phys 10:6615–6620

    Article  CAS  Google Scholar 

  43. Vydrov OA, Heyd J, Krukau V, Scuseria GE (2006) J Chem Phys 125:074106

    Article  Google Scholar 

  44. Francl MM, Pietro WJ, Hehre WJ, Binkley JS, Gordon MS, DeFrees DJ, Pople JA (1982) J Chem Phys 77:3654–3665

    Article  CAS  Google Scholar 

  45. Barone V, Cossi M (1998) J Phys Chem A 102:1995–2001

    Article  CAS  Google Scholar 

  46. Krishnan R, Binkley JS, Seeger R, Pople JA (1980) J. Chem. Phys. 72:650

    Article  CAS  Google Scholar 

  47. Clark T, Chandrasekhar J, Schleyer PVR (1983) J Comp Chem 4:294–301

    Article  CAS  Google Scholar 

  48. Ooyama Y, Harima Y (2012) ChemPhysChem 13:4032–4080

    Article  CAS  Google Scholar 

  49. Liang M, Chen J (2013) Chem Soc Rev 42:3453–3488

    Article  CAS  Google Scholar 

  50. Hirata N, Lagref J-J, Palomares EJ, Durrant JR, Nazeeruddin MK, Grätzel M, Censo DD (2004) Chem Eur J 10:595–602

    Article  CAS  Google Scholar 

  51. Bonhote P, Moser JE, Humphry-Baker R, Vlachopoulos N, Zakeeruddin SM, Walder L, Grätzel M (1999) J Am Chem Soc 121:1324–1336

    Article  CAS  Google Scholar 

  52. Clifford JN, Palomares E, Nazeeruddin MK, Thampi R, Grätzel M, Durrant JR (2004) J Am Chem Soc 126:5670–5671

    Article  CAS  Google Scholar 

  53. Fan W, Tan D, Deng W-Q (2012) ChemPhysChem 13:2051–2060

    Article  CAS  Google Scholar 

  54. Nalwa HS (2001) Handbook of advanced electronic and photonic materials and devices. Academic, San Diego, pp 1–3366

    Google Scholar 

  55. Jacquemin D, Preat J, Wathelet V, André JM, Perpète EA (2005) Chem Phys Lett 405:429–433

    Article  CAS  Google Scholar 

  56. Asbury JB, Wang YQ, Hao E, Ghosh H, Lian T (2001) Res Chem Intermed 27:393–406

    Article  CAS  Google Scholar 

  57. Barbara PF, Meyer TJ, Ratner MA (1996) J Phys Chem 100:13148–13168

    Article  CAS  Google Scholar 

  58. Matthews D, Infelta P, Grätzel M (1996) Sol Energy Mater Sol Cells 44:119–155

    Article  CAS  Google Scholar 

  59. Zimmermann C, Willig F, Ramakrishna S, Burfeindt B, Pettinger B, Eichberger R, Storck W (2001) J Phys Chem B 105:9245–9253

    Article  CAS  Google Scholar 

  60. Anderson NA, Ai X, Lian T (2003) J Phys Chem B 107:14414–14421

    Article  CAS  Google Scholar 

  61. Ramakrishna G, Singh AK, Palit DK, Ghosh HN (2004) J Phys Chem B 108:4775–4783

    Article  CAS  Google Scholar 

  62. Katoh R, Furube A, Yoshihara T, Hara K, Fujihashi G, Takano S, Murata S, Arakawa H, Tachiya M (2004) J Phys Chem B 108:4818–4822

    Article  CAS  Google Scholar 

  63. Vittadini A, Selloni A, Grätzel M (2000) J Phys Chem B 104:1300–1306

    Article  CAS  Google Scholar 

  64. Guo ZY, Liang WZ (2008) J Phys Chem C 112:16655–16662

    Article  CAS  Google Scholar 

  65. Dong H, Zhou X, Jiang C (2012) Theor Chem Acc 131:1102

    Article  Google Scholar 

Download references

Acknowledgments

Dr. Dong gratefully acknowledges the financial support from the National Science Foundation of China under Grant 21303079. Dr. Zhou appreciates the funding support by Technology Foundation for Selected Overseas Chinese Scholar from Ministry of Personnel of China.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Hao Dong or Xin Zhou.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Dong, H., Zan, Z. & Zhou, X. Can 2-pyrone derivative act as an effective π-linker for dye-sensitized solar cells: a theoretical study?. Theor Chem Acc 134, 1595 (2015). https://doi.org/10.1007/s00214-014-1595-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s00214-014-1595-1

Keywords

Navigation