Skip to main content
Log in

Intramolecular photo-induced charge transfer in visual retinal chromophore mimics: electron density-based indices at the TD-DFT and post-HF levels

  • Regular Article
  • Published:
Theoretical Chemistry Accounts Aims and scope Submit manuscript

Abstract

The first bright transition of a series of ten retinal-based dyes was simulated using TD-DFT, with several hybrid functionals, and with several post-Hartree–Fock methods. The CASPT2 results were used as reference to compare the results. The comparisons were not only based on the transitions energies, that is generally the case for such works, but were also based on the variation of the electron density from the ground to the excited along with several density-based indices recently developed. Among all the results obtained, it clearly appears that the PT2 correction to the CASSCF wavefunction is increasing with the increase in the charge transfer character of the transition. As already highlighted in the literature, TD-DFT poorly reproduces transition energies of this family of molecules whatever the functional. This work also confirms this observation for the variation of the electron density that is different between TD-DFT and CASPT2. Nevertheless, some functionals give better results than others. It appears that functionals having a fraction of 40–50 % of exact exchange give a better description of the electron density variation than the other functionals. Moreover, the best functional to compute the transition energies is not the best to simulate excited electron density that confirms an observation done in the literature on a different family of molecules.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12

Similar content being viewed by others

References

  1. Kandori H, Shichida Y, Yoshizawa T (2001) Photoisomerization in rhodopsin. Biochemistry 66:1197–1209

    CAS  Google Scholar 

  2. Palczewski K (2012) Chemistry and biology of vision. J Biol Chem 287:1612–1619

    Article  CAS  Google Scholar 

  3. Wald G (1968) Molecular basis of visual excitation. Nature 219:800–807

    Article  CAS  Google Scholar 

  4. Rivalta I, Nenov A, Garavelli M (2014) Modelling retinal chromophores photoisomerization: from minimal models in vacuo to ultimate bidimensional spectroscopy in rhodopsins. Phys Chem Chem Phys 16:16865–16879

    Article  CAS  Google Scholar 

  5. Garavelli M, Vreven T, Celani P et al (1998) Photoisomerization path for a realistic retinal chromophore model: the nonatetraeniminium cation. J Am Chem Soc 120:1285–1288

    Article  CAS  Google Scholar 

  6. González-Luque R, Garavelli M, Bernardi F et al (2000) Computational evidence in favor of a two-state, two-mode model of the retinal chromophore photoisomerization. Proc Natl Acad Sci 97:9379–9384

    Article  Google Scholar 

  7. Polli D, Altoè P, Weingart O et al (2010) Conical intersection dynamics of the primary photoisomerization event in vision. Nature 467:440–443

    Article  CAS  Google Scholar 

  8. Valsson O, Filippi C, Casida ME (2015) Regarding the use and misuse of retinal protonated Schiff base photochemistry as a test case for time-dependent density-functional theory. J Chem Phys 142:144104

    Article  Google Scholar 

  9. Buda F, Gianozzi P, Mauri F (2000) Density functional theory study of the structure and 13C chemical shifts of retinylidene iminium salts. J Phys Chem B 104:9048–9053

    Article  CAS  Google Scholar 

  10. Guido CA, Jacquemin D, Adamo C, Mennucci B (2010) On the TD-DFT accuracy in determining single and double bonds in excited-state structures of organic molecules. J Phys Chem A 114:13402–13410

    Article  CAS  Google Scholar 

  11. Rajput J, Rahbek DB, Andersen LH et al (2010) Probing and modeling the absorption of retinal protein chromophores in vacuo. Angew Chem Int Ed 49:1790–1793

    Article  CAS  Google Scholar 

  12. Fujimoto K, Hayashi S, Hasegawa JY, Nakatsuji H (2007) Theoretical studies on the color-tuning mechanism in retinal proteins. J Chem Theor Comput 3:605–618

    Article  CAS  Google Scholar 

  13. Schreiber M, Fulscher MP, Bub V (2001) The electronic spectra of symmetric cyanine dyes: a CASPT2 study. Phys Chem Chem Phys 3:3906–3912

    Article  CAS  Google Scholar 

  14. Peach MJG, Benfield P, Helgaker T, Tozer DJ (2008) Excitation energies in density functional theory: an evaluation and a diagnostic test. J Chem Phys 128:044118

    Article  Google Scholar 

  15. Guido CA, Cortona P, Mennucci B, Adamo C (2013) On the metric of charge transfer molecular excitations: a simple chemical descriptor. J Chem Theor Comput 9:3118

    Article  CAS  Google Scholar 

  16. Etienne T, Assfeld X, Monari A (2014) Toward a quantitative assessment of electronic transitions’ charge-transfer character. J Chem Theor Comput 10:3896–3905

    Article  CAS  Google Scholar 

  17. Etienne T, Assfeld X, Monari A (2014) new insight into the topology of excited states through detachment/attachment density matrices-based centroids of charge. J Chem Theor Comput 10:3906–3914

    Article  CAS  Google Scholar 

  18. Le Bahers T, Adamo C, Ciofini I (2011) A qualitative index of spatial extent in charge-transfer excitations. J Chem Theor Comput 7:2498–2506

    Article  Google Scholar 

  19. Ronca E, Angeli C, Belpassi L et al (2014) Density relaxation in time-dependent density functional theory: combining relaxed density natural orbitals and multireference perturbation theories for an improved description of excited states. J Chem Theor Comput 10:4014–4024

    Article  CAS  Google Scholar 

  20. Jacquemin D, Le Bahers T, Adamo C, Ciofini I (2012) What is the “best” atomic charge model to describe through-space charge-transfer excitations? Phys Chem Chem Phys 14:5383–5388

    Article  CAS  Google Scholar 

  21. Mewes SA, Plasser F, Dreuw A (2015) Communication: exciton analysis in time-dependent density functional theory: how functionals shape excited-state characters. J Chem Phys 143:171101

    Article  Google Scholar 

  22. Ciofini I, Le Bahers T, Adamo C et al (2012) Through-space charge transfer in rod-like molecules: lessons from theory. J Phys Chem C 116:11946–11955

    Article  CAS  Google Scholar 

  23. Le Bahers T, Brémond E, Ciofini I, Adamo C (2014) The nature of vertical excited states of dyes containing metals for DSSC applications: insights from TD-DFT and density based indexes. Phys Chem Chem Phys 16:14435–14444

    Article  Google Scholar 

  24. Warnan J, Favereau L, Meslin F et al (2012) Diketopyrrolopyrrole-porphyrin conjugates as broadly absorbing sensitizers for dye-sensitized solar cells. ChemSusChem 5:1568–1577

    Article  CAS  Google Scholar 

  25. Ehara M, Fukuda R, Adamo C, Ciofini I (2013) Chemically intuitive indices for charge-transfer excitation based on SAC-CI and TD-DFT calculations. J Comput Chem 34:2498–2501

    Article  CAS  Google Scholar 

  26. Schreiber M, Silva-Junior MR, Sauer SP, Thiel W (2008) Benchmarks for electronically excited states: CASPT2, CC2, CCSD, and CC3. J Chem Phys 128:134110

    Article  Google Scholar 

  27. Bravaya K, Bochenkova A, Granovsky A, Nemukhin A (2007) An opsin shift in rhodopsin: retinal S0–S1 excitation in protein, in solution, and in the gas phase. J Am Chem Soc 129:13035–13042

    Article  CAS  Google Scholar 

  28. Roos BO, Taylor PR (1980) A complete active space SCF method (CASSCF) using a density matrix formulated super-CI approach. Chem Phys 48:157–173

    Article  CAS  Google Scholar 

  29. Hariharan PC, Pople JA (1973) The influence of polarization functions on molecular orbital hydrogenation energies. Theor Chim Acta 28:213–222

    Article  CAS  Google Scholar 

  30. Steffen C, Thomas K, Huniar U et al (2010) MOLCAS7: the next generation. J Comput Chem 31:2967–2970

    CAS  Google Scholar 

  31. Andersson K, Malmqvist P, Roos BO et al (1990) Second-order perturbation theory with a CASSCF reference function. J Phys Chem 94:5483–5488

    Article  CAS  Google Scholar 

  32. Finley J, Malmqvist P-A, Roos BO, Serrano-Andrés L (1998) The multi-state CASPT2 method. Chem Phys Lett 288:299–306

    Article  CAS  Google Scholar 

  33. Serrano-Andrés L, Merchán M, Lindh R (2005) Computation of conical intersections by using perturbation techniques. J Chem Phys 122:104107

    Article  Google Scholar 

  34. Frisch MJ, Trucks GW, Schlegel HB et al (2009) Gaussian. Gaussian Inc

  35. Adamo C, Barone V (1999) Toward reliable density functional methods without adjustable parameters: the PBE0 model. J Chem Phys 110:6158–6170

    Article  CAS  Google Scholar 

  36. Zhao Y, Truhlar DG (2008) The M06 suite of density functionals for main group thermochemistry, thermochemical kinetics, noncovalent interactions, excited states, and transition elements: two new functionals and systematic testing of four M06-class functionals and 12 other function. Theor Chem Acc 120:215–241

    Article  CAS  Google Scholar 

  37. Yanai T, Tew DP, Nicholas HC (2004) A new hybrid exchange-correlation functional using the Coulomb-attenuating method (CAM-B3LYP). Chem Phys Lett 393:51–57

    Article  CAS  Google Scholar 

  38. Chai J-D, Head-Gordon M (2008) Long-range corrected hybrid density functionals with damped atom–atom dispersion corrections. Phys Chem Chem Phys 10:6615

    Article  CAS  Google Scholar 

  39. Peverati R, Truhlar DG (2011) Improving the accuracy of hybrid meta-GGA density functionals by range separation. J Phys Chem Lett 2:2810–2817

    Article  CAS  Google Scholar 

  40. Adamo C, Le Bahers T, Savarese M et al (2015) Exploring excited states using time dependent density functional theory and density based indexes. Coord Chem Rev 304–305:166–178

    Article  Google Scholar 

  41. Jacquemin D, Perpète EA, Ciofini I, Adamo C (2009) Accurate simulation of optical properties in dyes. Acc Chem Res 42:326–334

    Article  CAS  Google Scholar 

  42. Kochendoerfer GG, Lin SW, Sakmar TP, Mathies RA (1999) How color visual pigments are tuned. Trends Biochem Sci 24:300–305

    Article  CAS  Google Scholar 

  43. Nielsen MB (2009) Model systems for understanding absorption tuning by opsin proteins. Chem Soc Rev 38:913–924

    Article  CAS  Google Scholar 

  44. Wanko M, Hoffmann M, Strodel P et al (2005) Calculating absorption shifts for retinal proteins: computational challenges. J Phys Chem B 109:3606–3615

    Article  CAS  Google Scholar 

Download references

Acknowledgments

We acknowledge the PSMN calculation center for providing computational resources.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Marco Garavelli or Tangui Le Bahers.

Additional information

Published as part of the special collection of articles “Charge Transfer Modeling in Chemistry”.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (PDF 10100 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Demoulin, B., El-Tahawy, M.M.T., Nenov, A. et al. Intramolecular photo-induced charge transfer in visual retinal chromophore mimics: electron density-based indices at the TD-DFT and post-HF levels. Theor Chem Acc 135, 96 (2016). https://doi.org/10.1007/s00214-016-1815-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s00214-016-1815-y

Keywords

Navigation