Skip to main content
Log in

Correlation consistent, Douglas–Kroll–Hess relativistic basis sets for the 5p and 6p elements

  • Regular Article
  • Published:
Theoretical Chemistry Accounts Aims and scope Submit manuscript

Abstract

New sets of all-electron correlation consistent triple- and quadruple-zeta basis sets have been developed for the 5p and 6p elements (In–Xe, Tl–Rn). For the 5p elements, the spin-free Douglas–Kroll–Hess (DKH) Hamiltonian truncated at second order was used, while for the 6p row, DKH3 was employed. The resulting cc-pVmZ-DK sets (m = T, Q) are designed to correlate the valence ns and np electrons, but both core–valence sets (cc-pwCVmZ-DK) for (n − 1)spd correlation and diffuse-augmented sets (aug-cc-pVmZ-DK) for weak interactions have also been included. Benchmark DKH CCSD(T) calculations were carried out on the atoms for their first ionization potentials and electron affinities. Coupled cluster calculations of the near-equilibrium potential energy functions of 18 selected diatomic molecules were also carried out to determine their spectroscopic and thermodynamic properties. These results are extensively compared to those obtained using the analogous aug-cc-p(wC)VmZ-PP basis sets with their associated small-core pseudopotentials. For the quadruple-zeta quality basis sets, the mean unsigned differences were found to be just 1.4 mÅ for r e, 0.7 cm−1 for ω e, and 0.2 kcal/mol for D e with corresponding maximum differences of 4.8 mÅ, 4.3 cm−1, and 0.7 kcal/mol, respectively. Using all-electron DKH calculations with the present basis sets as corrections to the pseudopotential approximation appears to be most accurate when (n − 1)d correlation is considered in both cases using aug-cc-pwCVQZ quality basis sets. The new DK basis sets exhibit similar basis set convergence toward the complete basis set (CBS) limit as the PP-based sets and hence should find utility in all-electron [T, Q] basis set extrapolations.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1

Similar content being viewed by others

References

  1. Helgaker T, Klopper W, Tew DP (2008) Mol Phys 106:2107–2143

    Article  CAS  Google Scholar 

  2. Woon DE, Dunning TH Jr (1993) J Chem Phys 98:1358–1371

    Article  CAS  Google Scholar 

  3. Kendall RA, Dunning TH Jr, Harrison RJ (1992) J Chem Phys 96:6796–6806

    Article  CAS  Google Scholar 

  4. Dunning TH Jr (1989) J Chem Phys 90:1007–1023

    Article  CAS  Google Scholar 

  5. Woon DE, Dunning TH Jr (1994) J Chem Phys 101:8877–8893

    Article  CAS  Google Scholar 

  6. Feller D, Peterson KA, Hill JG (2011) J Chem Phys 135:044102

    Article  Google Scholar 

  7. Bartlett RJ, Musiał M (2007) Rev Mod Phys 79:291–352

    Article  CAS  Google Scholar 

  8. Jiang W, DeYonker NJ, Determan JJ, Wilson AK (2012) J Phys Chem A 116:870–885

    Article  CAS  Google Scholar 

  9. Mayhall NJ, Raghavachari K, Redfern PC, Curtiss LA (2009) J Phys Chem A 113:5170–5175

    Article  CAS  Google Scholar 

  10. Feller D, Peterson KA, Dixon DA (2008) J Chem Phys 129:204105

    Article  Google Scholar 

  11. Li S, Hennigan JM, Dixon DA, Peterson KA (2009) J Phys Chem A 113:7861–7877

    Article  CAS  Google Scholar 

  12. Bross DH, Hill JG, Werner H-J, Peterson KA (2013) J Chem Phys 139:094302

    Article  Google Scholar 

  13. Tajti A, Szalay PG, Császár AG, Kállay M, Gauss J, Valeev EF, Flowers BA, Vázquez J, Stanton JF (2004) J Chem Phys 121:11599–11613

    Article  CAS  Google Scholar 

  14. Karton A, Taylor PR, Martin JML (2007) J Chem Phys 127:064104

    Article  Google Scholar 

  15. Peterson KA, Feller D, Dixon DA (2012) Theor Chem Acc 131:1–20

    Article  CAS  Google Scholar 

  16. Császár AG, Kain JS, Polyansky OL, Zobov NF, Tennyson J (1998) Chem Phys Lett 293:317–323

    Article  Google Scholar 

  17. Császár AG, Kain JS, Polyansky OL, Zobov NF, Tennyson J (1999) Chem Phys Lett 312:613–616

    Article  Google Scholar 

  18. Feller D, Peterson KA (2009) J Chem Phys 131:154306

    Article  Google Scholar 

  19. Ruscic B, Wagner AF, Harding LB, Asher RL, Feller D, Dixon DA, Peterson KA, Song Y, Qian X, Ng C-Y, Liu J, Chen W, Schwenke DW (2002) J Phys Chem A 106:2727

    Article  CAS  Google Scholar 

  20. Iliaš M, Saue T (2007) J Chem Phys 126:4102

    Google Scholar 

  21. Douglas M, Kroll NM (1974) Ann Phys 82:89–155

    Article  CAS  Google Scholar 

  22. Hess BA (1986) Phys Rev A 33:3742

    Article  CAS  Google Scholar 

  23. Wolf A, Reiher M, Hess BA (2002) J Chem Phys 117:9215–9226

    Article  CAS  Google Scholar 

  24. Cowan RD, Griffin M (1976) J Opt Soc Am 66:1010

    Article  CAS  Google Scholar 

  25. Martin RL (1983) J Phys Chem 87:750

    Article  CAS  Google Scholar 

  26. Metz B, Stoll H, Dolg M (2000) J Chem Phys 113:2563–2569

    Article  CAS  Google Scholar 

  27. Peterson KA, Figgen D, Goll E, Stoll H, Dolg M (2003) J Chem Phys 119:11113–11123

    Article  CAS  Google Scholar 

  28. Peterson KA, Puzzarini C (2005) Theor Chem Acc 114:283–296

    Article  CAS  Google Scholar 

  29. Peterson KA, Figgen D, Dolg M, Stoll H (2007) J Chem Phys 126:124101

    Article  Google Scholar 

  30. Figgen D, Peterson KA, Dolg M, Stoll H (2009) J Chem Phys 130:164108

    Article  Google Scholar 

  31. Dolg M, Cao X (2012) Chem Rev 112:403–480

    Article  CAS  Google Scholar 

  32. Schwerdtfeger P (2011) Chem Phys Chem 12:3143–3155

    Article  CAS  Google Scholar 

  33. Peterson KA (2003) J Chem Phys 119:11099–11112

    Article  CAS  Google Scholar 

  34. Schwerdtfeger P, Assadollahzadeh B, Rohrmann U, Schäfer R, Cheeseman JR (2011) J Chem Phys 134:204102

    Article  Google Scholar 

  35. Mosyagin NS, Titov AV (2005) J Chem Phys 122:234106

    Article  CAS  Google Scholar 

  36. Spohn B, Goll E, Stoll H, Figgen D, Peterson KA (2009) J Phys Chem A 113:12478

    Article  CAS  Google Scholar 

  37. Jansen G, Hess BA (1989) Phys Rev A 39:6016

    Article  Google Scholar 

  38. Metz B, Schweizer M, Stoll H, Dolg M, Liu WJ (2000) Theor Chem Acc 104:22–28

    Article  CAS  Google Scholar 

  39. Roos BO, Lindh R, Malmqvist PA, Veryazov V, Widmark P-O (2004) J Phys Chem A 108:2851–2858

    Article  CAS  Google Scholar 

  40. Tsuchiya T, Abe M, Nakajima T, Hirao K (2001) J Chem Phys 115:4463–4472

    Article  CAS  Google Scholar 

  41. Noro T, Sekiya M, Koga T (2013) Theor Chem Acc 132:1363

    Article  Google Scholar 

  42. Noro T, Sekiya M, Koga T (2012) Theor Chem Acc 131:1124

    Article  Google Scholar 

  43. Ceolin GA, Berrêdo RC, Jorge FE (2013) Theor Chem Acc 132:1339

    Article  Google Scholar 

  44. Campos CT, Jorge FE (2013) Mol Phys 111:167–173

    Article  CAS  Google Scholar 

  45. Barros CL, de Oliveira PJP, Jorge FE, Neto AC, Campos M (2010) Mol Phys 108:1965–1972

    Article  CAS  Google Scholar 

  46. Dyall KG (2006) Theor Chem Acc 115:441

    Article  CAS  Google Scholar 

  47. Werner HJ, Knowles PJ, Lindh R, Manby FR, Schütz M et al. MOLPRO, version 2012.1, a package of ab initio programs. http://www.molpro.net

  48. Raghavachari K, Trucks GW, Pople JA, Head-Gordon M (1989) Chem Phys Lett 157:479–483

    Article  CAS  Google Scholar 

  49. Hampel C, Peterson KA, Werner H-J (1992) Chem Phys Lett 190:1–12

    Article  CAS  Google Scholar 

  50. Scuseria GE (1991) Chem Phys Lett 176:27–35

    Article  CAS  Google Scholar 

  51. Knowles PJ, Hampel C, Werner H-J (1993) J Chem Phys 99:5219–5227

    Article  CAS  Google Scholar 

  52. Watts JD, Gauss J, Bartlett RJ (1993) J Chem Phys 98:8718–8733

    Article  CAS  Google Scholar 

  53. Knowles PJ, Hampel C, Werner H-J (2000) J Chem Phys 112:3106–3107

    Article  CAS  Google Scholar 

  54. Peterson KA, Shepler BC, Figgen D, Stoll H (2006) J Phys Chem A 110:13877–13883

    Article  CAS  Google Scholar 

  55. Peterson KA, Yousaf KE (2010) J Chem Phys 133:174116

    Article  Google Scholar 

  56. Dunning TH Jr, Peterson KA, Wilson AK (2001) J Chem Phys 114:9244–9253

    Article  CAS  Google Scholar 

  57. Feller D, Peterson KA, de Jong WA, Dixon DA (2003) J Chem Phys 118:3510

    Article  CAS  Google Scholar 

  58. Dunham JL (1932) Phys Rev 41:721

    Article  CAS  Google Scholar 

  59. Pipek J, Mezey PG (1989) J Chem Phys 90:4916–4926

    Article  CAS  Google Scholar 

  60. Petersson GA, Zhong SJ, Montgomery JA, Frisch MJ (2003) J Chem Phys 118:1101–1109

    Article  CAS  Google Scholar 

  61. Nakajima T, Hirao K (2002) J Chem Phys 116:8270

    Article  CAS  Google Scholar 

  62. Blaudeau J-P, Brozell SR, Matsika S, Zhang Z, Pitzer RM (2000) Int J Quantum Chem 77:516–520

    Article  CAS  Google Scholar 

  63. Christiansen PA (2000) J Chem Phys 112:10070–10074

    Article  CAS  Google Scholar 

  64. Peterson KA, Dunning TH Jr (2002) J Chem Phys 117:10548–10560

    Article  CAS  Google Scholar 

  65. Weigend F, Ahlrichs R (2005) Phys Chem Chem Phys 7:3297

    Article  CAS  Google Scholar 

Download references

Acknowledgments

The authors gratefully acknowledge the support of the US National Science Foundation (Grant No. CHE-0723997).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Kirk A. Peterson.

Additional information

Dedicated to Professor Thom Dunning and published as part of the special collection of articles celebrating his career upon his retirement.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Bross, D.H., Peterson, K.A. Correlation consistent, Douglas–Kroll–Hess relativistic basis sets for the 5p and 6p elements. Theor Chem Acc 133, 1434 (2014). https://doi.org/10.1007/s00214-013-1434-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s00214-013-1434-9

Keywords

Navigation