Skip to main content
Log in

ZORA all-electron double zeta basis sets for the elements from H to Xe: application in atomic and molecular property calculations

  • Original Paper
  • Published:
Journal of Molecular Modeling Aims and scope Submit manuscript

Abstract

From the segmented all-electron basis set of double zeta valence quality plus polarization functions (DZP) for the elements from H to Xe, the zeroth-order regular approximation (ZORA) is used to generate a DZP-ZORA basis set, i.e., the contraction coefficients of the DZP set are re-optimized using the minimum ZORA energy criterion. To properly describe electrons distant from the nuclei, a diffuse function is added to each atomic symmetry (s, p, d, and f). The later basis set is designated as DZP-ZORA augmented. To test the effectiveness of the basis sets developed in this work, calculations of ionization energies and mean dipole polarizabilities of some elements are performed using the ZORA-CCSD(T) method. At the same level of theory, bond lengths, dissociation energies, and harmonic vibrational frequencies of some diatoms are also reported. Comparison with experimental data and recommended values available in the literature is made. Except for polarizability, scalar relativistic effects are estimated for the other properties. The performances of the ZORA and second-order Douglas-Kroll-Hess Hamiltonians are evaluated.

Graphical abstract

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

Data availability

N/A

Code availability

N/A

References

  1. Schäfer A, Horn H, Ahlrichs R (1992) Fully optimized contracted Gaussian basis sets for atoms Li to Kr. J Chem Phys 97:2571

    Article  Google Scholar 

  2. Weigend F, Furche F, Ahlrichs R (2003) Gaussian basis sets of quadruple zeta valence quality for atoms H–Kr. J Chem Phys 119:12753

    Article  CAS  Google Scholar 

  3. Dunning Jr TH (1989) Gaussian basis sets for use in correlated molecular calculations. I. The atoms boron through neon and hydrogen. J Chem Phys 90:1007

    Article  CAS  Google Scholar 

  4. Wilson AK, Woon DE, Peterson KA, Dunning Jr TH (1999) Gaussian basis sets for use in correlated molecular calculations. IX. The atoms gallium through krypton. J Chem Phys 110:7667

    Article  CAS  Google Scholar 

  5. Jensen F (2001) Polarization consistent basis sets: principles. J Chem Phys 115:9113

    Article  CAS  Google Scholar 

  6. Jensen F (2002) Polarization consistent basis sets. II. Estimating the Kohn–Sham basis set limit. J Chem Phys 116:7372

    Article  CAS  Google Scholar 

  7. Binkley JS, Pople JA, Hehre WJ (1980) Self-consistent molecular orbital methods. 21. Small split-valence basis sets for first-row elements. J Am Chem Soc 102:939

    Article  CAS  Google Scholar 

  8. Rassolov VA, Pople JA, Ratner MA, Windus TL (1998) 6-31G* basis set for atoms K through Zn. J Chem Phys 109:1223

    Article  CAS  Google Scholar 

  9. Canal Neto A, Muniz EP, Centoducatte R, Jorge FE (2005) Gaussian basis sets for correlated wave functions. Hydrogen, helium, first- and second-row atoms. J Mol Struct Theochem 718:219

    Article  CAS  Google Scholar 

  10. Camiletti GG, Machado SF, Jorge FE (2008) Gaussian basis set of double zeta quality for atoms K through Kr: application in DFT calculations of molecular properties. J Comput Chem 29:2434

    Article  CAS  Google Scholar 

  11. Barros CL, de Oliveira PJP, Jorge FE, Canal Neto A, Campos M (2010) Gaussian basis set of double zeta quality for atoms Rb through Xe: application in non-relativistic and relativistic calculations of atomic and molecular properties. Mol Phys 108:1965

    Article  CAS  Google Scholar 

  12. Van Lenthe E, Baerends EJ, Snijders JG (1993) Relativistic regular two-component Hamiltonians. J Chem Phys 99:4597

    Article  Google Scholar 

  13. Douglas M, Kroll NM (1974) Quantum electrodynamical corrections to the fine structure of helium. Ann Phys (NY) 82:89

    Article  CAS  Google Scholar 

  14. Hess BA (1985) Applicability of the no-pair equation with free-particle projection operators to atomic and molecular structure calculations. Phys Rev A 32:756

    Article  CAS  Google Scholar 

  15. Hess BA (1986) Relativistic electronic-structure calculations employing a two-component no-pair formalism with external-field projection operators. Phys Rev A 33:3742

    Article  CAS  Google Scholar 

  16. Van Leeuwen R, van Lenthe E, Baerends EJ, Snijders JG (1994) Exact solutions of regular approximate relativistic wave equations for hydrogen-like atoms. J Chem Phys 101:1272

    Article  Google Scholar 

  17. Jorge FE, Canal Neto A, Camiletti GG, Machado SF (2009) Contracted Gaussian basis sets for Douglas–Kroll–Hess calculations: estimating scalar relativistic effects of some atomic and molecular properties. J Chem Phys 130:064108

    Article  CAS  Google Scholar 

  18. Bondarenko MA, Novikov AS, Abramov PA, Sakhapov IF, Sokolov MN, Adonin SA (2021) 2,3,4,5-Tetraiodopyrrole as a building block for halogen bonding: formation of supramolecular hybrids with organic iodide salts in solid state. J Mol Struct 1230:129931

    Article  CAS  Google Scholar 

  19. Jakubowska K, Pecul M (2021) Nuclear magnetic resonance parameters in Zn2, Cd2 and Hg2 dimers: relativistic calculations. Theor Chem Acc 140:26

  20. Rusakova IL, Rusakov YY (2021) Quantum chemical calculations of 77Se and 125Te nuclear magnetic resonance spectral parameters and their structural applications. Magn Reson Chem 59:359

    Article  CAS  Google Scholar 

  21. Orenha RP, Caramori GF, Misturini A, Galembeck SE (2019) Shedding light on the electronic structure of [Ru(η6-C16H16)(NH3)3]2+ complex: a computational insight. J Mol Model 25:11

    Article  Google Scholar 

  22. Te Velde G, Bickelhaupt FM, Baerends EJ, Fonseca Guerra C, van Gisbergen SJA, Snijders JG, Ziegler T (2001) Chemistry with ADF. J Comput Chem 22:931

    Article  Google Scholar 

  23. Neese F (2012) The ORCA program system. Wiley Interdiscip Rev Comput Mol Sci 2:73

    Article  CAS  Google Scholar 

  24. Jorge FE, Canal Neto A (2020) A new method for optimizing a set of nonlinear parameters: application in total Hartree–Fock atomic energy calculations. Theor Chem Acc 139:76

  25. Pantazis DA, Chen X-Y, Landis CR, Neese F (2008) All-electron scalar relativistic basis sets for third-row transition metal atoms. J Chem Theory Comput 4:908

    Article  CAS  Google Scholar 

  26. Ferreira IB, Campos CT, Jorge FE (2020) All-electron basis sets augmented with diffuse functions for He, Ca, Sr, Ba, and lanthanides: application in calculations of atomic and molecular properties. J Mol Model 26:95

    Article  CAS  Google Scholar 

  27. Camiletti GG, Canal Neto A, Jorge FE, Machado SF (2009) Augmented Gaussian basis sets of double and triple zeta valence qualities for the atoms K and Sc–Kr: Applications in HF, MP2, and DFT calculations of molecular electric properties. J Mol Struct THEOCHEM 910:122

    Article  CAS  Google Scholar 

  28. De Oliveira PJP, Barros CL, Jorge FE, Canal Neto A, Campos M (2010) Augmented Gaussian basis set of double zeta valence quality for the atoms Rb and Y–Xe: application in DFT calculations of molecular electric properties. J Mol Struct THEOCHEM 948:43

    Article  Google Scholar 

  29. Moore CE (1949) Atomic energy levels. Natl. Bur. Stand. (U.S.) Circ. No. 467, U.S. GPO, Washington, Vol. I

  30. Schwerdtfeger P, Nagle JK (2019) 2018 table of static dipole polarizabilities of the neutral elements in the periodic table. Mol Phys 117:1200

    Article  CAS  Google Scholar 

  31. Lide DR (ed) (1994) CRC handbook of chemistry and physics. CRC Press, London

    Google Scholar 

  32. Huber KP, Herzberg G (1979) Molecular Spectra and Molecular Structure. IV. Constants of Diatomic Molecules. Van Nostrand Reinhold, New York

  33. Koga T, Aoki H, Garcia de la Veja JM, Tatewaki H (1997) Atomic ionization potentials and electron affinities with relativistic and mass corrections. Theor Chem Acc 96:248

  34. De Jong WA, Harrison RJ, Dixon DA (2001) Parallel Douglas–Kroll energy and gradients in NWChem: estimating scalar relativistic effects using Douglas–Kroll contracted basis sets. J Chem Phys 114:48

    Article  Google Scholar 

Download references

Funding

This work is financially supported by the Conselho Nacional de Desenvolvimento Científico e Tecnológico and Fundação de Apoio à Ciência e Tecnologia do Espírito Santo (Brazilian Agencies).

Author information

Authors and Affiliations

Authors

Contributions

All authors contributed equally to the work.

Corresponding author

Correspondence to Francisco Elias Jorge.

Ethics declarations

Conflicts of interest

The authors declare no competing interests.

Additional information

Publisher’s note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Neto, A.C., de Oliveira, A.Z., Jorge, F.E. et al. ZORA all-electron double zeta basis sets for the elements from H to Xe: application in atomic and molecular property calculations. J Mol Model 27, 232 (2021). https://doi.org/10.1007/s00894-021-04847-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s00894-021-04847-5

Keywords

Navigation