Skip to main content
Log in

Adsorption and surface diffusion of silicon growth species in silicon carbide chemical vapour deposition processes studied by quantum-chemical computations

  • Regular Article
  • Published:
Theoretical Chemistry Accounts Aims and scope Submit manuscript

Abstract

The effect chlorine addition to the gas mixture has on the surface chemistry in the chemical vapour deposition (CVD) process for silicon carbide (SiC) epitaxial layers is studied by quantum-chemical calculations of the adsorption and diffusion of SiH2 and SiCl2 on the (000-1) 4H–SiC surface. SiH2 was found to bind more strongly to the surface than SiCl2 by approximately 100 kJ mol−1 and to have a 50 kJ mol−1 lower energy barrier for diffusion on the fully hydrogen-terminated surface. On a bare SiC surface, without hydrogen termination, the SiCl2 molecule has a somewhat lower energy barrier for diffusion. SiCl2 is found to require a higher activation energy for desorption once chemisorbed, compared to the SiH2 molecule. Gibbs free energy calculations also indicate that the SiC surface may not be fully hydrogen terminated at CVD conditions since missing neighbouring pair of surface hydrogens is found to be a likely type of defect on a hydrogen-terminated SiC surface.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

References

  1. Chelnokov VE, Syrkin AL (1997) Mater Sci Eng B46:248–253

    Article  CAS  Google Scholar 

  2. Lebedev AA, Chelnokov VE (1999) Semiconductors 33:999–1001

    Article  CAS  Google Scholar 

  3. Kimoto T, Itoh A, Matsunami H (1997) Phys Status Solidi B 202:247–262

    Article  CAS  Google Scholar 

  4. Crippa D, Rode DL, Masi M (2001) Semicond Semimet 72:1–491

    Article  Google Scholar 

  5. Aylward G, Findlay T (1998) SI chemical data, 4th edn. Wiley, Australia, p 115

    Google Scholar 

  6. Pedersen H, Leone S, Kordina O, Henry A, Nishizawa S, Koshka Y, Janzén E (2012) Chem Rev 112:2434–2453

    Article  CAS  Google Scholar 

  7. Valente G, Cavallotti C, Masi M, Carrà C (2001) J Cryst Growth 230:247–257

    Article  CAS  Google Scholar 

  8. Nigam S, Chung HJ, Polyakov AY, Fanton MA, Weiland BE, Snyder DW, Skowronski M (2005) J Cryst Growth 284:112–122

    Article  CAS  Google Scholar 

  9. Veneroni A, Omarini F, Masi M (2005) Cryst Res Technol 40:967–971

    Article  CAS  Google Scholar 

  10. Olander J, Larsson K (2004) Thin Solid Films 458:191–196

    Article  CAS  Google Scholar 

  11. Olander J, Larsson K (2001) J Phys Chem B 105:7619–7623

    Article  CAS  Google Scholar 

  12. Wachowicz E, Kiejna A (2012) J Phys Condens Matter 24:385801

    Article  Google Scholar 

  13. Ellison A (1999) Silicon carbide growth by high temperature CVD techniques, Diss Thesis no 599. Linköping University, Linköping

    Google Scholar 

  14. Schlegel HB (1982) J Comp Chem 3:214–218

    Article  CAS  Google Scholar 

  15. Becke AD (1993) J Chem Phys 98:5648–5652

    Article  CAS  Google Scholar 

  16. Lee C, Yang W, Parr RG (1988) Phys Rev B 37:785–789

    Article  CAS  Google Scholar 

  17. Bouteiller Y, Mijoule C, Nizam M, Barthelat JC, Daudey JP, Pelissier M, Silvi B (1988) Mol Phys 65:295–312

    Article  CAS  Google Scholar 

  18. Durand P, Barthelat JC (1975) Theor Chim Acta 38:283–302

    Article  CAS  Google Scholar 

  19. Hehre WJ, Ditchfield R, Pople JA (1972) J Chem Phys 56:2257–2261

    Article  CAS  Google Scholar 

  20. Head-Gordon M, Pople JA, Frisch MJ (1988) Chem Phys Lett 153:503–506

    Article  CAS  Google Scholar 

  21. Pople JA, Head-Gordon M, Raghavachari K (1987) J Chem Phys 87:5968–5975

    Article  CAS  Google Scholar 

  22. Frisch MJ, Pople JA, Binkley JS (1984) J Chem Phys 80:3265–3269

    Article  CAS  Google Scholar 

  23. Frisch MJ, Trucks GW, Schlegel HB, Scuseria GE, Robb MA, Cheeseman JR, Scalmani G, Barone V, Mennucci B, Petersson GA, Nakatsuji H, Caricato M, Li X, Hratchian HP, Izmaylov AF, Bloino J, Zheng G, Sonnenberg JL, Hada M, Ehara M, Toyota K, Fukuda R, Hasegawa J, Ishida M, Nakajima T, Honda Y, Kitao O, Nakai H, Vreven T, Montgomery JrJA, Peralta JE, Ogliaro F, Bearpark M, Heyd JJ, Brothers E, Kudin KN, Staroverov VN, Kobayashi R, Normand J, Raghavachari K, Rendell A, Burant JC, Iyengar SS, Tomasi J, Cossi M, Rega N, Millam JM, Klene M, Knox JE, Cross JB, Bakken V, Adamo C, Jaramillo J, Gomperts R, Stratmann RE, Yazyev O, Austin AJ, Cammi R, Pomelli C, Ochterski JW, Martin RL, Morokuma K, Zakrzewski VG, Voth GA, Salvador P, Dannenberg JJ, Dapprich S, Daniels AD, Farkas Ö, Foresman JB, Ortiz JV, Cioslowski J, Fox DJ Gaussian IncWallingford CT 2009

  24. Peng C, Ayala PY, Schlegel HB, Frisch MJ (1996) J Comp Chem 17:49–56

    Article  CAS  Google Scholar 

  25. Peng C, Schlegel HB (1993) Israel J Chem 33:449–454

    Article  CAS  Google Scholar 

  26. Halgren TA, Lipscomb WN (1977) Chem Phys Lett 49:225–232

    Article  CAS  Google Scholar 

  27. Coffin JM, Hamilton TP, Pulay P, Hargittai I (1989) Inorg Chem 28:4092–4094

    Article  CAS  Google Scholar 

  28. Hermansson K, Ojamäe L (1994) “MOVIEMOL: an easy-to-use molecular display and animation program User Manual,” Report No UUIC-B19-500. Uppsala University, Institute of Chemistry

    Google Scholar 

  29. Brena B, Ojamäe L (2008) J Phys Chem C 112:13516–13523

    Article  CAS  Google Scholar 

  30. Trwoga PF, Kenyon AJ, Pitt CW (1998) J Appl Phys 83:3789–3794

    Article  CAS  Google Scholar 

  31. Choyke WJ, Hamiltgn DR, Patrick L (1964) Phys Rev 133:A1163–A1166

    Article  Google Scholar 

Download references

Acknowledgments

The Swedish Research Council VR, the Swedish Foundation for Strategic Research SSF and the Swedish National Supercomputer Centre NSC are gratefully acknowledged.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Lars Ojamäe.

Additional information

Published as part of a special collection of articles focusing on chemical vapor deposition and atomic layer deposition.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Kalered, E., Pedersen, H., Janzén, E. et al. Adsorption and surface diffusion of silicon growth species in silicon carbide chemical vapour deposition processes studied by quantum-chemical computations. Theor Chem Acc 132, 1403 (2013). https://doi.org/10.1007/s00214-013-1403-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s00214-013-1403-3

Keywords

Navigation