Skip to main content
Log in

On the Adsorption of Gases on Silicon Carbide: Simple Estimates

  • SURFACE PHYSICS AND THIN FILMS
  • Published:
Physics of the Solid State Aims and scope Submit manuscript

Abstract

The adsorption of atomic and molecular nitrogen and ammonia on silicon carbide is considered within two physically different (solid-state and quantum-chemical) approaches. In the solid-state approach, the Haldane–Anderson model is used for the density of states of the SiC 4H and 6H polytypes to demonstrate that the energy of binding to the substrate is 6 and 3 eV for N atoms and N2 molecule, respectively. In the quantum-chemical approach, the model of a surface diatomic molecule is used to find that the binding energy of atomic nitrogen is 6 and 4 eV for adsorption on the C- and Si-edges, respectively. It has been established that the charge transfer between an adsorbate and the substrate may be neglected in all the considered cases. It has been hypothesized that the dissociation of a molecule with the further passivation of its dangling sp3-orbitals with hydrogen atoms takes place for silicon carbide as in the case of ammonia adsorption on Si(100).

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

REFERENCES

  1. Silicon Carbide: Recent Major Advances, Ed. by W. J. Choyke, H. Matsunami, and G. Pensl (Springer, Berlin, Heidelberg, 2004). http://www.springer.de.

    Google Scholar 

  2. Advances in Silicon Carbide. Processing and Applications, Ed. by S. E. Saddow and A. Agarwal (Artech House, Boston, London, 2004). www.artechhouse.com.

    Google Scholar 

  3. A. A. Lebedev, Semicond. Sci. Technol. 21, R17 (2006).

    Article  ADS  Google Scholar 

  4. Y. H. Woo, T. Yu, and Z. X. Chen, Appl. Phys. Rev. 108, 071301 (2010).

    Article  ADS  Google Scholar 

  5. G. V. Benemanskaya, P. A. Dement’ev, S. A. Kukushkin, A. V. Osipov, and S. N. Timoshnev, Tech. Phys. Lett. 45, 201 (2019).

    Article  ADS  Google Scholar 

  6. S. A. Kukushkin, A. V. Osipov, and N. A. Feoktistov, Phys. Solid State 56, 1507 (2014).

    Article  ADS  Google Scholar 

  7. S. Yu. Davydov, Adsorption Theory: Model Hamiltonian Method (SPbGETU LETI, St. Petersburg, 2013) [in Russian]; twirpx.com/file/1596114/.

  8. S. Yu. Davydov, A. A. Lebedev, and O. V. Posrednik, An Elementary Introduction to the Theory of Nanosystems (Lan’, St. Petersburg, 2014) [in Russian].

  9. S. Yu. Davydov and S. V. Troshin, Phys. Solid State 49, 1583 (2007).

    Article  ADS  Google Scholar 

  10. S. Yu. Davydov and A. V. Pavlyk, Semiconductors 35, 796 (2001).

    Article  ADS  Google Scholar 

  11. S. Yu. Davydov and A. V. Pavlyk, Tech. Phys. Lett. 29, 500 (2003).

    Article  ADS  Google Scholar 

  12. S. Yu. Davydov and O. V. Posrednik, The Method of Bonding Orbitals in Semiconductor Theory, the School-Book (SPbGETU LETI, St. Petersburg, 2007) [in Russian]; twirpx.com/file/1014608/.

  13. J. P. Xu, P. T. Lai, C. L. Chan, and Y. C. Cheng, Appl. Phys. Lett. 76, 372 (2000).

    Article  ADS  Google Scholar 

  14. Y. S. Liu, S. Hashimoto, K. Abe, R. Hayashibe, T. Yamakami, M. Nakao, and K. Kamimura, Jpn. J. Appl. Phys. 44, 673 (2005).

    Article  ADS  Google Scholar 

  15. Y. Iwasaki, H. Yano, T. Hatayama, Y. Uraoka, and T. Fuyuki, Appl. Phys. Express 3, 026201 (2010).

    Article  ADS  Google Scholar 

  16. F. Liu, C. Carraro, A. P. Pisano, and R. Maboudian, J. Micromech. Microeng. 20, 035011 (2010).

    Article  ADS  Google Scholar 

  17. E. Pitthan, A. L. Gobbi, H. I. Boudinov, and F. C. Stedile, J. Electron. Mater. 44, 2823 (2009).

    Article  ADS  Google Scholar 

  18. C. Yu. Davydov, Semiconductors 53, 699 (2019).

    Article  ADS  Google Scholar 

  19. Physical Values, The Handbook, Ed. by E. S. Grigor’ev and E. Z. Meilikhov (Energoatomizdat, Moscow, 1991) [in Russian].

    Google Scholar 

  20. Tables of Interatomic Distances and Configuration in Molecules and Ions, Ed. by L. E. Sutton (The Chemical Society, London, 1958).

    Google Scholar 

  21. M. D. Ramsier and J. T. Yates, Jr., Surf. Sci. Rep. 12, 243 (1991).

    Article  ADS  Google Scholar 

  22. S. Yu. Davydov and S. K. Tikhonov, Phys. Solid State 37, 1514 (1995).

    ADS  Google Scholar 

  23. W. A. Harrison, Phys. Rev. B 27, 3552 (1983).

    Article  ADS  Google Scholar 

  24. W. A. Harrison, Phys. Rev. B 31, 2121 (1985).

    Article  ADS  Google Scholar 

  25. S. Yu. Davydov and O. V. Posrednik, Phys. Solid State 57, 837 (2015).

    Article  ADS  Google Scholar 

  26. L. A. Bol’shov, A. P. Napartovich, A. G. Naumovets, and A. G. Fedorus, Sov. Phys. Usp. 20, 432 (1977).

    Article  ADS  Google Scholar 

  27. S. Yu. Davydov, Tech. Phys. 59, 624 (2014).

    Article  Google Scholar 

  28. S. Yu. Davydov, A. V. Zubov, and A. A. Lebedev, Tech. Phys. Lett. 45 (5) (2019, in press).

Download references

ACKNOWLEDGMENTS

The authors are grateful to S.A. Kukushkin for proposing the topic and useful discussions.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to S. Yu. Davydov.

Ethics declarations

The authors declare that they have no conflicts of interest.

Additional information

Translated by E. Glushachenkova

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Davydov, S.Y., Posrednik, O.V. On the Adsorption of Gases on Silicon Carbide: Simple Estimates. Phys. Solid State 61, 1490–1493 (2019). https://doi.org/10.1134/S1063783419080109

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S1063783419080109

Keywords:

Navigation