Skip to main content

Advertisement

Log in

Effect of monomeric sequence on transport properties of d-glucose and ascorbic acid in poly(VP-co-HEMA) hydrogels with various water contents: molecular dynamics simulation approach

  • Regular Article
  • Published:
Theoretical Chemistry Accounts Aims and scope Submit manuscript

Abstract

We have used full-atomistic molecular dynamics (MD) simulations of both random and blocky sequence hydrogel networks of poly(N-vinyl-2-pyrrolidone-co-2-hydroxyethyl methacrylate) (P(VP-co-HEMA)) with a composition of VP/HEMA = 37:13 to investigate the effect of the monomeric sequence and the water content on the transport properties of ascorbic acid and d-glucose at 310.15 K. The degrees of randomness of the monomer sequence for the random and the blocky copolymers were 1.170 and 0.104, respectively, and the degree of polymerization was fixed at 50. By analyzing the pair correlation functions, it was found that for both monomeric sequences, the guest molecules (i.e., ascorbic acid and d-glucose) have greater accessibility to the VP units than to the HEMA units due to the higher hydrophilicity of VP compared to HEMA units. While the monomeric sequence effect on the P(VP-co-HEMA) hydrogel is clearly observed with 20 wt. % water content, the effect is significantly reduced with 40 wt. % water content and disappears completely with 80 wt. % water content. This is because the hydrophilic guest molecules are more likely to be associated with water molecules than with the polymer network at the high water content. By analyzing the diffusion of the guest molecules and the inner-surface area, it is also found that the guest molecules are confined in the system at 20 wt. % water content, resulting in highly anomalous sub-diffusion. Therefore, at low water content, the diffusion of the guest molecules in the hydrogel is directly affected by the monomeric sequence through the interaction of guest molecules with the monomeric units, whereas such monomeric sequence effects are significantly reduced with increasing water content.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11

Similar content being viewed by others

References

  1. Lowman AM, Peppas NA (1999) Hydrogels. Encyclopedia of controlled drug delivery, vol 2. Wiley, New York

  2. Wichterle O, Lim D (1960) Hydrophilic gels for biological use. Nature 185(4706):117–118

    Article  Google Scholar 

  3. Peppas NA (1997) Hydrogels and drug delivery. Curr Opin Colloid Interface Sci 2(5):531–537

    Article  CAS  Google Scholar 

  4. Lee KY, Mooney DJ (2001) Hydrogels for tissue engineering. Chem Rev 101(7):1869–1879. doi:10.1021/Cr000108x

    Article  CAS  Google Scholar 

  5. Tanaka Y, Gong JP, Osada Y (2005) Novel hydrogels with excellent mechanical performance. Prog Polym Sci 30(1):1–9

    Article  CAS  Google Scholar 

  6. Peppas NA, Huang Y, Torres-Lugo M, Ward JH, Zhang J (2000) Physicochemical, foundations and structural design of hydrogels in medicine and biology. Annu Rev Biomed Eng 2:9–29

    Article  CAS  Google Scholar 

  7. Ratner BD, Hoffman AS, Schoen FJ, Lemons JE (2004) Biomaterials science: an introduction to materials in medicine. Elsevier Academic Press, San Diego, CA

    Google Scholar 

  8. Montheard JP, Chatzopoulos M, Chappard D (1992) 2-Hydroxyethyl methacrylate (Hema)—chemical-properties and applications in biomedical fields. J Macromol Sci, Rev Macromol Chem Phys C32(1):1–34

    Article  CAS  Google Scholar 

  9. Hoffman AS (2002) Hydrogels for biomedical applications. Adv Drug Deliv Rev 54(1):3–12

    Article  CAS  Google Scholar 

  10. Peppas NA, Moynihan HJ, Lucht LM (1985) The structure of highly crosslinked poly(2-hydroxyethyl methacrylate) hydrogels. J Biomed Mater Res 19(4):397–411

    Article  CAS  Google Scholar 

  11. Gokce M, Akata RF, KiremitciGumusderelioglu M (1996) 5-FU loaded pHEMA drainage implants for glaucoma-filtering surgery: device design and in vitro release kinetics. Biomaterials 17(9):941–949

    Article  CAS  Google Scholar 

  12. KiremitciGumusderelioglu M, Gokce M, Akata RF (1996) A novel MMC-loaded pHEMA drainage device for the treatment of glaucoma: in vitro and in vivo studies. J Biomater Sci Polym Ed 7(10):857–869

    Article  CAS  Google Scholar 

  13. Lu SX, Anseth KS (1999) Photopolymerization of multilaminated poly(HEMA) hydrogels for controlled release. J Control Release 57(3):291–300

    Article  CAS  Google Scholar 

  14. Teijon JM, Trigo RM, Garcia O, Blanco MD (1997) Cytarabine trapping in poly(2-hydroxyethyl methacrylate) hydrogels: drug delivery studies. Biomaterials 18(5):383–388

    Article  CAS  Google Scholar 

  15. Hsiue GH, Guu JA, Cheng CC (2001) Poly(2-hydroxyethyl methacrylate) film as a drug delivery system for pilocarpine. Biomaterials 22(13):1763–1769

    Article  CAS  Google Scholar 

  16. Young CD, Wu JR, Tsou TL (1998) Fabrication and characteristics of polyHEMA artificial skin with improved tensile properties. J Membr Sci 146(1):83–93

    Article  CAS  Google Scholar 

  17. Young CD, Wu JR, Tsou TL (1998) High-strength, ultra-thin and fiber-reinforced pHEMA artificial skin. Biomaterials 19(19):1745–1752

    Article  CAS  Google Scholar 

  18. Husain MT, Akhtar M, Akhtar N (1983) Report on evaluation of hydron film as burn wound dressing. Burns Incl Therm Inj 9(5):330–334

    Article  CAS  Google Scholar 

  19. Nathan P, Robb EC, Law EJ, MacMillan BG (1982) A clinical study of antimicrobial agents delivered to burn wounds from a drug-loaded synthetic dressing. J Trauma 22(12):1015–1018

    Article  CAS  Google Scholar 

  20. Lee SD, Hsiue GH, Kao CY, Chang PCT (1996) Artificial cornea: surface modification of silicone rubber membrane by graft polymerization of pHEMA via glow discharge. Biomaterials 17(6):587–595

    Article  CAS  Google Scholar 

  21. Kidane A, Szabocsik JM, Park K (1998) Accelerated study on lysozyme deposition on poly(HEMA) contact lenses. Biomaterials 19(22):2051–2055

    Article  CAS  Google Scholar 

  22. Arica MY, Senel S, Alaeddinoglu NG, Patir S, Denizli A (2000) Invertase immobilized on spacer-arm attached poly(hydroxyethyl methacrylate) membrane: preparation and properties. J Appl Polym Sci 75(14):1685–1692

    Article  CAS  Google Scholar 

  23. Akashi M, Takemoto K (1990) New aspects of polymer drugs. Adv Polym Sci 97:107–146

    Article  CAS  Google Scholar 

  24. Bell CL, Peppas NA (1995) Biomedical membranes from hydrogels and interpolymer complexes. Adv Polym Sci 122:125–175

    Article  CAS  Google Scholar 

  25. Laporte RJ (1997) Hydrophilic polymer coatings for medical devices. CRC Press, Lancaster, PA

    Google Scholar 

  26. Blanco MD, Trigo RM, Garcia O, Teijon JM (1997) Controlled release of cytarabine from poly(2-hydroxyethyl methacrylate-co-N-vinyl-2-pyrrolidone) hydrogels. J Biomater Sci Polym Ed 8(9):709–719

    Article  CAS  Google Scholar 

  27. Gallardo A, Fernandez F, Bermejo P, Rebuelta M, Cifuentes A, Diez-Masa JC, San Roman J (2000) Controlled release of cyclosporine from VP-HEMA copolymer systems of adjustable resorption monitorized by MEKC. Biomaterials 21(9):915–921

    Article  CAS  Google Scholar 

  28. Davis TP, Huglin MB (1989) Studies on copolymeric hydrogels of N-vinyl-2-pyrrolidone with 2-hydroxyethyl methacrylate. Macromolecules 22(6):2824–2829

    Article  CAS  Google Scholar 

  29. Atta AM, Arndt KF (2004) Swelling behaviour of pH- and temperature-sensitive copolymers containing 2-hydroxy-ethyl methacrylate and N-vinyl-2-pyrrolidone crosslinked with new crosslinkers. Polym Int 53(11):1870–1881. doi:10.1002/Pi.1606

    Article  CAS  Google Scholar 

  30. Zaldivar D, Peniche C, Gallardo A, Sanroman J (1993) Biocompatible hydrogels of controlled hydrophobicity from copolymers of N-vinyl-2-pyrrolidone and furfuryl methacrylate. Biomaterials 14(14):1073–1079

    Article  CAS  Google Scholar 

  31. Langer R, Cima LG, Tamada JA, Wintermantel E (1990) Future-directions in biomaterials. Biomaterials 11(9):738–745

    Article  CAS  Google Scholar 

  32. Blanco MD, Trigo RM, Teijon C, Gomez C, Teijon JM (1998) Slow releasing of ara-C from poly(2-hydroxyethyl methacrylate) and poly(2-hydroxyethyl methacrylate-co-N-vinyl-2-pyrrolidone) hydrogels implanted subcutaneously in the back of rats. Biomaterials 19(7–9):861–869

    Article  CAS  Google Scholar 

  33. Title 21 CFR (Code of Federal Regulations) 175.105 (2010)

  34. Mabilleau G, Aguado E, Stancu IC, Cincu C, Basle ME, Chappard D (2008) Effects of FGF-2 release from a hydrogel polymer on bone mass and microarchitecture. Biomaterials 29(11):1593–1600. doi:10.1016/j.biomaterials.2007.12.01

    Article  CAS  Google Scholar 

  35. Cifuentes A, Diez-Masa JC, Montenegro C, Rebuelta M, Gallardo A, Elvira C, San Roman J (2000) Recombinant growth hormone delivery systems based on vinylpyrrolidone-hydroxyethyl methacrylate copolymer matrices: monitoring optimization by capillary zone electrophoresis. J Biomater Sci Polym Ed 11(9):993–1005

    Article  CAS  Google Scholar 

  36. Frutos P, Diez-Pena E, Frutos G, Barrales-Rienda JM (2002) Release of gentamicin sulphate from a modified commercial bone cement. Effect of (2-hydroxyethyl methacrylate) comonomer and poly(N-vinyl-2-pyrrolidone) additive on release mechanism and kinetics. Biomaterials 23(18):3787–3797

    Google Scholar 

  37. Ahmad B, Bashir S, Nisa SU, Huglin MB (2004) Chemically crosslinked N-vinyl-2-pyrrolidone/2-hydroxyethyl methacrylate (VP/HEMA) copolymer for the controlled release of cyclic oligopeptide. Turk J Chem 28(3):279–285

    CAS  Google Scholar 

  38. Matsushima S, Takasu A, Inai Y, Hirabayashi T, Era S, Sogami M, Sasaki F, Ohsaki H, Kinosada Y (2002) Equivalent cross-relaxation rate imaging in the synthetic copolymer gels and invasive ductal carcinomas of the breast. Magn Reson Imaging 20(3):285–293

    Article  CAS  Google Scholar 

  39. Hosaka S, Yamada A, Tanzawa H, Momose T, Magatani H, Nakajima A (1980) Mechanical-properties of the soft contact-lens of poly(methyl methacrylate-N-vinylpyrrolidone). J Biomed Mater Res 14(5):557–566

    Article  CAS  Google Scholar 

  40. Compan V, Garrido J, Manzanares JA, Andres J, Esteve JS, Lopez ML (1992) True and apparent oxygen permeabilities of contact-lenses. Optom Vis Sci 69(9):685–690

    Article  CAS  Google Scholar 

  41. Swan MC, Bucknall DG, Goodacre TE, Czernuszka JT (2011) Synthesis and properties of a novel anisotropic self-inflating hydrogel tissue expander. Acta Biomater 7(3):1126–1132. doi:10.1016/j.actbio.2010.10.017

    Article  CAS  Google Scholar 

  42. Chummun S, Addison P, Stewart KJ (2010) The osmotic tissue expander: a 5-year experience. J Plast Reconstr Aesthet Surg 63(12):2128–2132. doi:10.1016/j.bjps.2010.02.002

    Article  Google Scholar 

  43. Obdeijn MC, Nicolai JPA, Werker PMN (2009) The osmotic tissue expander: a three-year clinical experience. J Plast Reconstr Aesthet Surg 62(9):1219–1222. doi:10.1016/j.bjps.2007.12.088

    Article  Google Scholar 

  44. von See C, Rucker M, Bormann KH, Gellrich NC (2010) Using a novel self-inflating hydrogel expander for intraoral gingival tissue expansion prior to bone augmentation. Br J Oral Maxillofac Surg 48(4):e5–e6. doi:10.1016/j.bjoms.2009.10.025

    Article  Google Scholar 

  45. Gallardo A, Lemus AR, Roman JS, Cifuentes A, Diez-Masa JC (1999) Micellar electrokinetic chromatography applied to copolymer systems with heterogeneous distribution. Macromolecules 32(3):610–617

    Article  CAS  Google Scholar 

  46. Odian G (2004) Principles of polymerization, 4th edn. Wiley, Hoboken, NJ

  47. Dionisio JM, Odriscoll KF (1979) High-conversion co-polymerization of styrene and methyl-methacrylate. J Polym Sci, Part C: Polym Lett 17(11):701–707

    CAS  Google Scholar 

  48. Elias HG (1997) An introduction to polymer science. VCH, Weinheim

    Google Scholar 

  49. Hautus FLM, Linssen HN, German AL (1984) Dependence of computed copolymer reactivity ratios on the calculation method. 1. Effect of experimental setup. J Polym Sci, Part A: Polym Chem 22(11):3487–3498

    CAS  Google Scholar 

  50. Hamielic AE, MacGregor JF, Pendilis A (1989) Copolymerization comprehensive polymer science. Pergamon, New York

    Google Scholar 

  51. Jenkins AD (1996) Reactivity in radical copolymerization. Comprehensive polymer science second supplement. Pergamon Press, New York

    Google Scholar 

  52. Faragalla MM, Hill DJT, Whittaker AK (2002) The copolymerization of N-vinyl-2-pyrrolidone with 2-hydroxyethyl methacrylate. Polym Bull 47(5):421–427

    Article  CAS  Google Scholar 

  53. Alissa MA, Davis TP, Huglin MB, Yip DCF (1985) Copolymerizations involving N-vinyl-2-pyrrolidone. Polymer 26(12):1869–1874

    Article  CAS  Google Scholar 

  54. Lee SG, Brunello GF, Jang SS, Bucknall DG (2009) Molecular dynamics simulation study of P (VP-co-HEMA) hydrogels: effect of water content on equilibrium structures and mechanical properties. Biomaterials 30(30):6130–6141

    Article  CAS  Google Scholar 

  55. Lee SG, Brunello GF, Jang SS, Lee JH, Bucknall DG (2009) Effect of monomeric sequence on mechanical properties of P(VP-co-HEMA) hydrogels at low hydration. J Phys Chem B 113(19):6604–6612

    Article  CAS  Google Scholar 

  56. Lee JH, Bucknall DG (2008) Swelling behavior and network structure of hydrogels synthesized using controlled UV-initiated free radical polymerization. J Polym Sci, Part B: Polym Phys 46(14):1450–1462. doi:10.1002/Polb.21481

    Article  CAS  Google Scholar 

  57. Jang SS, Goddard WA, Kalani MYS (2007) Mechanical and transport properties of the poly(ethylene oxide)-poly(acrylic acid) double network hydrogel from molecular dynamic simulations. J Phys Chem B 111(7):1729–1737. doi:10.1021/Jp0656330

    Article  CAS  Google Scholar 

  58. Jang SS, Goddard WA, Kalani MYS, Myung D, Frank CW (2007) Mechanical and transport properties of the poly(ethylene oxide)-poly(acrylic acid) double network hydrogel from molecular dynamic simulations. J Phys Chem B 111(51):14440

    Article  CAS  Google Scholar 

  59. Brunello G, Lee SG, Jang SS, Qi Y (2009) A molecular dynamics simulation study of hydrated sulfonated poly (Ether Ether Ketone) for application to polymer electrolyte membrane fuel cells: effect of water content. J Renew Sustain Energy 1:033101

    Article  Google Scholar 

  60. Jang SS, Goddard WA (2007) Structures and transport properties of hydrated water-soluble dendrimer-grafted polymer membranes for application to polymer electrolyte membrane fuel cells: classical molecular dynamics approach. J Phys Chem C 111(6):2759–2769

    Article  CAS  Google Scholar 

  61. Jang SS, Lin ST, Cagin T, Molinero V, Goddard WA (2005) Nanophase segregation and water dynamics in the dendrion diblock copolymer formed from the Frechet polyaryl ethereal dendrimer and linear PTFE. J Phys Chem B 109(20):10154–10167. doi:10.1021/Jp050125w

    Article  CAS  Google Scholar 

  62. Jang SS, Molinero V, Cagin T, Goddard WA (2004) Nanophase-segregation and transport in Nafion 117 from molecular dynamics simulations: effect of monomeric sequence. J Phys Chem B 108(10):3149–3157. doi:10.1021/Jp036842c

    Article  CAS  Google Scholar 

  63. Mayo SL, Olafson BD, Goddard WA (1990) Dreiding—a generic force-field for molecular simulations. J Phys Chem 94(26):8897–8909

    Article  CAS  Google Scholar 

  64. Levitt M, Hirshberg M, Sharon R, Laidig KE, Daggett V (1997) Calibration and testing of a water model for simulation of the molecular dynamics of proteins and nucleic acids in solution. J Phys Chem B 101(25):5051–5061

    Article  CAS  Google Scholar 

  65. Lee SG, Jang SS, Kim J, Kim G (2010) Distribution and diffusion of water in model epoxy molding compound: molecular dynamics simulation approach. IEEE Trans Adv Packag 33(2):333–339. doi:10.1109/Tadvp.2009.2033570

    Article  CAS  Google Scholar 

  66. Lee SG, Choi JI, Koh W, Jang SS, Kim J, Kim G (2011) Effect of temperature on water molecules in model epoxy molding compound: molecular dynamics simulation approach IEEE transactions on components. Packag Manuf Technol 1(10):1533–1542

    Article  CAS  Google Scholar 

  67. Brunello GF, Mateker WR, Lee SG, Choi JI, Jang SS (2011) Effect of temperature on structure and water transport of hydrated sulfonated poly (Ether Ether Ketone): a molecular dynamics simulation approach. J Renew Sustain Energy 3:043111

    Article  CAS  Google Scholar 

  68. Plimpton S (1995) Fast parallel algorithms for short-range molecular-dynamics. J Comput Phys 117(1):1–19

    Article  CAS  Google Scholar 

  69. Plimpton SJ, Pollock R, Stevens M (1997) Particle-mesh ewald and rRESPA for parallel molecular dynamics simulations. Paper presented at the eighth SIAM conference on parallel processing for scientific computing, Minneapolis, MN

  70. Swope WC, Andersen HC, Berens PH, Wilson KR (1982) A computer-simulation method for the calculation of equilibrium-constants for the formation of physical clusters of molecules—application to small water clusters. J Chem Phys 76(1):637–649

    Article  CAS  Google Scholar 

  71. Hoover WG (1985) Canonical dynamics—equilibrium phase-space distributions. Phys Rev A 31(3):1695–1697

    Article  Google Scholar 

  72. Nose S (1984) A unified formulation of the constant temperature molecular-dynamics methods. J Chem Phys 81(1):511–519

    Article  CAS  Google Scholar 

  73. Nose S, Klein ML (1983) A study of solid and liquid carbon tetrafluoride using the constant pressure molecular-dynamics technique. J Chem Phys 78(11):6928–6939

    Article  CAS  Google Scholar 

  74. Rappe AK, Goddard WA (1991) Charge equilibration for molecular-dynamics simulations. J Phys Chem 95(8):3358–3363

    Article  CAS  Google Scholar 

  75. Hockney RW, Eastwood JW (1981) Computer simulation using particles. McGraw-Hill International Book Co., New York

    Google Scholar 

  76. Davis TP, Huglin MB (1988) Some mechanical-properties of Poly(2-Hydroxyethyl Methacrylate) gels swollen in water 1,4-Dioxane mixtures. Makromolekulare Chemie-Rapid Communications 9(1):39–43

    Article  CAS  Google Scholar 

  77. Hong Y, Chirila TV, Cuypers MJH, Constable IJ (1996) Polymers of 1-vinyl-2-pyrrolidinone as potential vitreous substitutes: physical selection. J Biomater Appl 11(2):135–181

    CAS  Google Scholar 

  78. TakacsNovak K, Avdeef A (1996) Interlaboratory study of log P determination by shake-flask and potentiometric methods. J Pharm Biomed Anal 14(11):1405–1413

    Article  CAS  Google Scholar 

  79. LOGKOW Databank (1994) Sangster Research Laboratories

  80. Kou JH, Amidon GL, Lee PI (1988) Ph-dependent swelling and solute diffusion characteristics of poly(Hydroxyethyl methacrylate-Co-methacrylic acid) hydrogels. Pharm Res 5(9):592–597

    Article  CAS  Google Scholar 

  81. Khare AR, Peppas NA (1995) Swelling deswelling of anionic copolymer gels. Biomaterials 16(7):559–567

    Article  CAS  Google Scholar 

  82. Peppas NA, Wright SL (1996) Solute diffusion in poly(vinyl alcohol) poly(acrylic acid) interpenetrating networks. Macromolecules 29(27):8798–8804

    Article  CAS  Google Scholar 

  83. Russell RJ, Axel AC, Shields KL, Pishko MV (2001) Mass transfer in rapidly photopolymerized poly(ethylene glycol) hydrogels used for chemical sensing. Polymer 42(11):4893–4901

    Article  CAS  Google Scholar 

  84. Peppas NA, Wright SL (1998) Drug diffusion and binding in ionizable interpenetrating networks from poly(vinyl alcohol) and poly(acrylic acid). Eur J Pharm Biopharm 46(1):15–29

    Article  CAS  Google Scholar 

  85. Saxton MJ (2001) Anomalous subdiffusion in fluorescence photobleaching recovery: a Monte Carlo study. Biophys J 81(4):2226–2240

    Article  CAS  Google Scholar 

  86. Weiss M, Elsner M, Kartberg F, Nilsson T (2004) Anomalous subdiffusion is a measure for cytoplasmic crowding in living cells. Biophys J 87(5):3518–3524. doi:10.1529/biophysj.104.044263

    Article  CAS  Google Scholar 

  87. Schutz GJ, Schindler H, Schmidt T (1997) Single-molecule microscopy on model membranes reveals anomalous diffusion. Biophys J 73(2):1073–1080

    Article  CAS  Google Scholar 

  88. Weiss M, Hashimoto H, Nilsson T (2003) Anomalous protein diffusion in living cells as seen by fluorescence correlation spectroscopy. Biophys J 84(6):4043–4052

    Article  CAS  Google Scholar 

  89. Azurmendi HF, Ramia ME (2001) Anomalous diffusion of water in a hydrogel of sucrose and diepoxide monomers. J Chem Phys 114(21):9657–9662

    Article  CAS  Google Scholar 

  90. Drazer G, Zanette DH (1999) Experimental evidence of power-law trapping-time distributions in porous media. Phys Rev E 60(5):5858–5864

    Article  CAS  Google Scholar 

  91. Robinson D, Anderson JE, Lin JL (1990) Measurement of diffusion-coefficients of some indoles and ascorbic-acid by flow-injection analysis. J Phys Chem 94(2):1003–1005

    Article  CAS  Google Scholar 

  92. CRC handbook of chemistry and physics (2005) 85th edn. CRC Press, Boca Raton, FL

    Google Scholar 

  93. Gladden JK, Dole M (1953) Diffusion in supersaturated solutions. 2. Glucose solutions. J Am Chem Soc 75(16):3900–3904

    Article  CAS  Google Scholar 

  94. Ribeiro ACF, Ortona O, Simoes SMN, Santos CIAV, Prazeres PMRA, Valente AJM, Lobo VMM, Burrows HD (2006) Binary mutual diffusion coefficients of aqueous solutions of sucrose, lactose, glucose, and fructose in the temperature range from (298.15 to 328.15) K. J Chem Eng Data 51(5):1836–1840. doi:10.1021/Je0602061

    Google Scholar 

  95. Myung D, Koh W, Ko J, Noolandi J, Carrasco M, Smithc A, Frank C, Ta C (2005) Characterization of poly(ethylene glycol)-poly(acrylic acid) (PEG-PAA) double networks designed for corneal implant applications. Investig Ophthalmol Vis Sci 46 (Abstract 5003)

  96. Giovambattista N, Debenedetti PG, Rossky PJ (2007) Hydration behavior under confinement by nanoscale surfaces with patterned hydrophobicity and hydrophilicity. J Phys Chem C 111(3):1323–1332. doi:10.1021/Jp065419b

    Article  CAS  Google Scholar 

  97. BellissentFunel MC, SridiDorbez R, Bosio L (1996) X-ray and neutron scattering studies of the structure of water at a hydrophobic surface. J Chem Phys 104(24):10023–10029

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Seung Soon Jang.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Lee, S.G., Koh, W., Brunello, G.F. et al. Effect of monomeric sequence on transport properties of d-glucose and ascorbic acid in poly(VP-co-HEMA) hydrogels with various water contents: molecular dynamics simulation approach. Theor Chem Acc 131, 1206 (2012). https://doi.org/10.1007/s00214-012-1206-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s00214-012-1206-y

Keywords

Navigation