Skip to main content
Log in

Three-dimensional molecular geometry of PEG hydrogels by an “expansion-contraction” method through Monte Carlo simulations

  • Papers
  • Published:
Chinese Journal of Polymer Science Aims and scope Submit manuscript

Abstract

Three-dimensional (3-D) coarse-grained Monte Carlo algorithms were used to simulate the conformations of swollen hydrogels formed by copper(I)-catalyzed azide-alkyne cycloaddition (CuAAC). The simulation consists of three successive steps including diffusion, cross-linking and relaxation. The cross-linking of multifunctional reaction sites is simulated instantly followed by fast crosslinking. In order to explore the validity of this approach pristine poly(ethylene glycol) (PEG) hydrogels with tri- and tetra-functional reaction sites (G3 and G4 respectively) were prepared and characterized. The data from the simulations were found to be in good agreement with experimental results such as PEG lengths between crosslinks, pore volume and pore radius distribution, indicating the validity of the modeling algorithm. The calculated PEG lengths in G3 and G4 networks are close (≈ 4.6 nm). The 3-D visual topological structure of the hydrogel network suggests that the “ideal” hydrogel is far from cubic, diamond or any well defined structures of regular repeating cells.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Drury, J.L. and Mooney, D.J., Biomaterials, 2003, 24(24): 4337

    Article  CAS  Google Scholar 

  2. Qiu, Y. and Park, K., Adv. Drug Deliv. Rev., 2001, 53(3): 321

    Article  CAS  Google Scholar 

  3. Meijer, H.E.H. and Govaert, L.E., Prog. Polym. Sci., 2005, 30(8–9): 915

    Article  CAS  Google Scholar 

  4. Shoichet, M.S., Macromolecules, 2010, 43(2): 581

    Article  CAS  Google Scholar 

  5. Grest, G.S., Pütz, M., Everaers, R. and Kremer, K., J. Non-Cryst. Solids, 2000, 274(1): 139

    Article  CAS  Google Scholar 

  6. Hölzl, T., Trautenberg, H.L. and Göritz, D., Phys. Rev. Lett., 1997, 79(12): 2293

    Article  Google Scholar 

  7. Yong, C.W. and Higgs, P.G., Macromolecules, 1999, 32(15): 5062

    Article  CAS  Google Scholar 

  8. Duering, E.R., Kremer, K. and Grest, G.S., J. Chem. Phys., 1994, 101(9): 8169

    Article  CAS  Google Scholar 

  9. Hosono, N., Masubuchi, Y., Furukawa, H. and Watanabe, T., J. Chem. Phys., 2007, 127(16): 164905

    Article  Google Scholar 

  10. Nguyen, K.T. and West, J.L., Biomaterials, 2002, 23(22): 4307

    Article  CAS  Google Scholar 

  11. Schneider, S. and Linse, P., Eur. Phys. J. E, 2002, 8(5): 457

    CAS  Google Scholar 

  12. Schneider, S. and Linse, P., J. Phys. Chem. B, 2003, 107(32): 8030

    Article  CAS  Google Scholar 

  13. Yan, Q.L. and de Pablo, J.J., Phys. Rev. Lett., 2003, 91(1): 018301

    Article  Google Scholar 

  14. Mann, B.A., Holm, C. and Kremer, K., J. Chem. Phys., 2005, 122: 154903

    Article  Google Scholar 

  15. Lin, C.C. and Anseth, K.S., Pharm. Res., 2009, 26(3): 631

    Article  CAS  Google Scholar 

  16. Sakai, T., Matsunaga, T., Yamamoto, Y., Ito, C., Yoshida, R., Suzuki, S., Sasaki, N., Shibayama, M. and Chung, U.I., Macromolecules, 2008, 41(14): 5379

    Article  CAS  Google Scholar 

  17. Sugimura, A., Asai, M., Matsunaga, T., Akagi, Y., Sakai, T., Noguchi, H. and Shibayama, M., Polym. J., 2013, 45(3): 300

    Article  CAS  Google Scholar 

  18. Kolb, H.C., Finn, M.G. and Sharpless, K.B., Angew. Chem. Int. Ed., 2001, 40(11): 2004

    Article  CAS  Google Scholar 

  19. Binder, W.H. and Sachsenhofer, R., Macromol. Rapid Commun., 2007, 28(1): 15

    Article  CAS  Google Scholar 

  20. Malkoch, M., Vestberg, R., Gupta, N., Mespouille, L., Dubois, P., Mason, A.F., Hedrick, J.L., Liao, Q., Frank, C.W., Kingsbury, K. and Hawker, C.J., Chem. Commun., 2006, (26): 2774

    Google Scholar 

  21. Crescenzi, V., Cornelio, L., Di Meo, C., Nardecchia, S. and Lamanna, R., Biomacromolecules, 2007, 8(6): 1844

    Article  CAS  Google Scholar 

  22. Xu, L.Q., Yao, F., Fu, G.D. and Kang, E.T., Biomacromolecules, 2010, 11(7): 1810

    Article  CAS  Google Scholar 

  23. Yao, F., Xu, L.Q., Fu, G.D. and Lin, B.P., Macromolecules, 2010, 43(23): 9761

    Article  CAS  Google Scholar 

  24. Liu, S.Q., Ee, P.L. R., Ke, C.Y., Hedrick, J.L. and Yang, Y.Y., Biomaterials, 2009, 30(8): 1453

    Article  CAS  Google Scholar 

  25. Gragert, M., Schunack, M. and Binder, W.H., Macromol. Rapid Commun., 2011, 32(5): 419

    Article  CAS  Google Scholar 

  26. Schunack, M., Gragert, M., Dohler, D., Michael, P. and Binder, W.H., Macromol. Chem. Phys., 2012, 213(2): 205

    Article  CAS  Google Scholar 

  27. Fu, G.D., Jiang, H., Yao, F., Xu, L.Q., Ling, J. and Kang, E.T., Macromol. Rapid Commun., 2012, 33(18): 1523

    Article  CAS  Google Scholar 

  28. Binder, K., “Monte Carlo and molecular dynamics simulations in polymer science”, Oxford University Press, USA, 1995

    Google Scholar 

  29. Metropolis, N., Rosenbluth, A.W., Rosenbluth, M.N., Teller, A.H. and Teller, E., J. Chem. Phys., 1953, 21(6): 1087

    Article  CAS  Google Scholar 

  30. Leach, A.R., “Molecular modelling: principles and applications”, Prentice Hall, New York, 1996

    Google Scholar 

  31. Leung, Y.K. and Eichinger, B.E., J. Chem. Phys., 1984, 80(8): 3877

    Article  CAS  Google Scholar 

  32. Leung, Y.K. and Eichinger, B.E., J. Chem. Phys., 1984, 80(8): 3885

    Article  CAS  Google Scholar 

  33. Chen, J., Blevins, W.E., Park, H. and Park, K., J. Control. Release, 2000, 64(1): 39

    Article  CAS  Google Scholar 

  34. Zhang, X.Z., Yang, Y.Y., Chung, T.S. and Ma, K.X., Langmuir, 2001, 17(20): 6094

    Article  CAS  Google Scholar 

  35. Flory, J.P., “Principles of polymer chemistry”, Cornell University Press, 1953

    Google Scholar 

  36. Steinmetz, N.F. and Manchester, M., Biomacromolecules, 2009, 10(4): 784

    Article  CAS  Google Scholar 

  37. Hagan, S., Davis, S., Illum, L., Davies, M., Garnett, M., Taylor, D., Irving, M. and Tadros, T.F., Langmuir, 1995, 11(5): 1482

    Article  CAS  Google Scholar 

  38. Flory, P.J. and Rehner Jr, J., J. Chem. Phys., 1943, 11: 521

    Article  CAS  Google Scholar 

  39. Bromberg, L., J. Appl. Polym. Sci., 1996, 59(3): 459

    Article  CAS  Google Scholar 

  40. Radi, B., Wellard, R.M. and George, G.A., Macromolecules, 2010, 43(23): 9957

    Article  CAS  Google Scholar 

  41. Gibson, K. and Scheraga, H.A., J. Phys. Chem., 1987, 91(15): 4121

    Article  CAS  Google Scholar 

  42. Edgecombe, S. and Linse, P., Macromolecules, 2007, 40(10): 3868

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Jun Ling  (凌君) or Guo-dong Fu  (付国东).

Additional information

This work was financially supported by the National Natural Science Foundation of China (Nos. 21274020, 21074022 and 21304019) and Zhejiang Provincial Natural Science Foundation of China (No. Y4110115).

Electronic supplementary material

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zhang, Ak., Ling, J., Sun, Yw. et al. Three-dimensional molecular geometry of PEG hydrogels by an “expansion-contraction” method through Monte Carlo simulations. Chin J Polym Sci 33, 721–731 (2015). https://doi.org/10.1007/s10118-015-1620-4

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10118-015-1620-4

Keywords

Navigation