Skip to main content
Log in

Water molecule encapsulated in carbon nanotube model systems: effect of confinement and curvature

  • Regular Article
  • Published:
Theoretical Chemistry Accounts Aims and scope Submit manuscript

Abstract

Water present in the nanoscale confined medium like the hydrophobic interior of the carbon nanotubes (CNT) is known to extol unique properties that depart largely from their behavior in the bulk form. Considering suitable model systems that structurally resemble single unit of the CNT, we demonstrate that two unique parameters namely the local nanoscale curvature and the confinement length are of cardinal importance in governing the structural and electronic properties of water molecule present inside CNT in a general manner. Water molecule encapsulated between the model systems that offer both the above two effects exhibits dramatic trend in the interaction energy with respect to the variation of these parameters. In relation to the curvature of the model system, we propose three different regimes where water molecule experiences a distinct trend in the stabilization energy. Similarly, a confinement distance of 6 Å also marks as a borderline for the distinct manifestations in the stabilization energy of the water molecule. These two parameters also play a key role in governing the significant variations in the structural parameters, Mulliken charges, and red and blue shift in the O–H vibrational frequencies of the encapsulated water molecule. There seems to be interplay between curvature and confinement in deciding the electronic properties of water in the nanoscale confinement.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  1. Schlichting I, Berendzen J, Chu K, Stock AM, Maves SA, Benson DE, Sweet BM, Ringe D, Petsko GA, Sligar SG (2000) Science 287:1615

    Article  CAS  Google Scholar 

  2. Taraphder S, Hummer G (2003) J Am Chem Soc 125:3931

    Article  CAS  Google Scholar 

  3. de Groot BL, Grubmüller H (2001) Science 294:2353

    Article  Google Scholar 

  4. Hub JS, de Groot BL (2008) Proc Natl Acad Sci USA 105:1198

    Article  CAS  Google Scholar 

  5. Jensen MO, Dror RO, Xu H, Borhani DW, Arkin IT, Eastwood MP, Shaw DE (2008) Proc Natl Acad Sci USA 105:14430

    Article  CAS  Google Scholar 

  6. Hinds BJ, Chopra N, Rantell T, Andrews R, Gavalas V, Bacha LG (2004) Science 303:62

    Article  CAS  Google Scholar 

  7. Holt JK, Park HG, Wang Y, Stadermann M, Artyukhin AB, Grigoropoulos CP, Noy A, Bakajin O (2006) Science 312:1034

    Article  CAS  Google Scholar 

  8. Hummer G, Rasaiah JC, Noworyta JP (2001) Nature 414:188

    Article  CAS  Google Scholar 

  9. Waghe A, Rasaiah JC, Hummer G (2002) J Chem Phys 117:10789

    Article  CAS  Google Scholar 

  10. Maibaum L, Chandler D (2003) J Phys Chem B 107:1189

    Article  CAS  Google Scholar 

  11. Ghosh S, Sood AK, Kumar N (2003) Science 299:1042

    Article  CAS  Google Scholar 

  12. Koga K, Gao GT, Tanaka H, Zeng XC (2001) Nature 412:802

    Article  CAS  Google Scholar 

  13. Ball P (1993) Nature 361:297

    Article  Google Scholar 

  14. Alexiadis A, Kassinos S (2008) Chem Rev 108:5014

    Article  CAS  Google Scholar 

  15. Zheng G, Wang Z, Irle S, Morokuma K (2006) J Am Chem Soc 128:15117

    Article  CAS  Google Scholar 

  16. Maheshkumar R, Elang M, Subramanian V (2010) J Phys Chem A 114:4313

    Google Scholar 

  17. Lu X, Chen Z (2005) Chem Rev 105:3643

    Article  CAS  Google Scholar 

  18. Chandrakumar KRS, Srinivasu K, Ghosh SK (2008) J Phys Chem C 112:15670

    Article  CAS  Google Scholar 

  19. Wang L, Zhao J, Li F, Fang H, Lu JP (2009) J Phys Chem C 113:5368

    Article  CAS  Google Scholar 

  20. Sharma M, Donadio D, Schwegler E, Galli G (2008) Nano Lett 8:2959

    Article  CAS  Google Scholar 

  21. Coudert FX, Vuilleumier R, Boutin A (2006) Chem Phys Chem 7:2464

    Article  CAS  Google Scholar 

  22. Schmidt MW, Baldridge KK, Boatz JA, Elbert ST, Gordon MS, Jensen JH, Koseki S, Matsunga N, Nguyen KA, Su SJ, Dupuis M, Montgomery JA (1993) J Comput Chem 14:1347

    Article  CAS  Google Scholar 

  23. Zhao Y, Truhlar DG (2008) Theor Chem Acc 120:215

    Article  CAS  Google Scholar 

  24. Ahlrichs R, Bär M, Häser M, Horn H, Kölmel C (1989) Chem Phys Lett 162:165

    Article  CAS  Google Scholar 

  25. Walters EA, Grover JR, White MG, Hui ET (1985) J Phys Chem 89:3814

    Article  CAS  Google Scholar 

  26. Levitt M, Perutz MF (1988) J Mol Biol 201:751

    Article  CAS  Google Scholar 

  27. Suzuki S, Green PG, Bumgarner RE, Dasgupta S, Goddard WA III, Blake GA (1992) Science 257:942

    Article  CAS  Google Scholar 

  28. Rosas I, Alkorta I, Elguero J (1997) J Phys Chem A 101:9457

    Article  Google Scholar 

  29. Prakash M, Gopal SK, Subramanian V (2009) J Phys Chem A 113:13845

    Article  CAS  Google Scholar 

  30. Zhao Y, Tishchenko O, Truhlar DG (2005) J Phys Chem B 109:19046

    Article  CAS  Google Scholar 

  31. Jenness GR, Jordan KD (2009) J Phys Chem C 113:10242

    Article  CAS  Google Scholar 

  32. Franks F (ed) (1972) Water: a comprehensive treatise. Plenum, New York

    Google Scholar 

  33. Rasaiah JC, Garde S, Hummer G (2008) Annu Rev Phys Chem 59:713

    Article  CAS  Google Scholar 

  34. Martí J, Gordillo MC (2001) Phys Rev B 63:165430

    Article  Google Scholar 

  35. Feng C, Zhang RQ, Dong SL, Niehaus TA, Frauenheim T (2007) J Phys Chem C 111:14131

    Article  CAS  Google Scholar 

  36. Sharma SC, Singh D, Li Y (2005) J Raman Spectrosc 36:755

    Article  CAS  Google Scholar 

  37. Kondratyuk P, Yates JT Jr (2007) Acc Chem Res 40:995

    Article  CAS  Google Scholar 

  38. Ramachandran CN, Sathyamurthy N (2005) Chem Phys Lett 410:348

    Article  CAS  Google Scholar 

  39. Hehre WJ, Radom L, Schleyer PVR, Pople JA (1986) Ab initio molecular orbital theory. Wiley, New York

    Google Scholar 

  40. Shameema O, Ramachandran CN, Sathyamurthy N (2006) J Phys Chem A 110:2

    Article  CAS  Google Scholar 

Download references

Acknowledgments

One of the authors, Naresh K. Jena, gratefully acknowledges Homi Bhabha National Institute (HBNI), Department of Atomic Energy, India, for the award of Senior Research Fellowship. The authors thank Dr. T. Mukherjee for his kind support and the computer center of Bhabha Atomic Research Centre for providing the high-performance parallel computing facilities. The work is also supported by the INDO-EU project MONAMI on computational Materials Science. The support from J. C. Bose fellowship to one of us (Swapan K. Ghosh) is gratefully acknowledged.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to K. R. S. Chandrakumar or Swapan K. Ghosh.

Additional information

Dedicated to Professor Eluvathingal Jemmis and published as part of the special collection of articles celebrating his 60th birthday.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Jena, N.K., Tripathy, M.K., Samanta, A.K. et al. Water molecule encapsulated in carbon nanotube model systems: effect of confinement and curvature. Theor Chem Acc 131, 1205 (2012). https://doi.org/10.1007/s00214-012-1205-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s00214-012-1205-z

Keywords

Navigation