Skip to main content
Log in

First-principles simulations of the 27Al and 17O solid-state NMR spectra of the CaAl2Si3O10 glass

  • Regular Article
  • Published:
Theoretical Chemistry Accounts Aims and scope Submit manuscript

Abstract

The local and medium-range structure of the 20CaO·20Al2O3·60SiO2 glass generated by classical molecular dynamics simulations has been compared to NMR experiments by computing the 27Al and 17O NMR parameters and NMR spectra from first-principles simulations. The calculation of the NMR parameters (chemical shielding and quadrupolar parameters), which are then used to simulate solid-state MAS and 3QMAS NMR spectra, is achieved by the gauge including projector augmented-wave and the projector augmented-wave methods on the DFT-PBE relaxed structure. The NMR spectra calculated with the present approach are found to be in excellent agreement with the experimental data, providing an unambiguous view of the local and medium-range structure of aluminosilicate glasses.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  1. Massiot D, Fayon F, Montouillout V, Pellerin N, Hiet J, Roiland C, Florian P, Coutures J-P, Cormier L, Neuville DR (2008) J Non-Cryst Solids 354(2–9):249–254

    Article  CAS  Google Scholar 

  2. Pedone A (2009) J Phys Chem C 113:20773–20784

    Article  CAS  Google Scholar 

  3. Stebbins JF (1995) In: Stebbins JF, McMillan PF, Dingwell DB (eds) Reviews in mineralogy, vol 32. MSA, Washington DC, p 191

    Google Scholar 

  4. Dupree E, Pettifer RF (1984) Nature (London) 308:523

    Article  CAS  Google Scholar 

  5. Linati L, Lusvardi G, Malavasi G, Menabue L, Menziani MC, Mustarelli P, Pedone A, Segre U (2008) J Non-Cryst Solids 354:84–89

    Article  CAS  Google Scholar 

  6. Maekawa H, Maekawa T, Kawamura K, Yokokawa T (1991) J Non-Cryst Solids 127:53

    Article  CAS  Google Scholar 

  7. Voigt U, Lammert H, Eckert H, Heuer A (2005) Phys Rev B 72:64207

    Article  Google Scholar 

  8. Frydman L, Harwod JS (1995) J Am Chem Soc 117:5367–5368

    Article  CAS  Google Scholar 

  9. Medek A, Harwood S, Frydman L (1995) J Am Chem Soc 117:12779–12787

    Article  CAS  Google Scholar 

  10. Pedone A, Charpentier T, Menziani MC (2010) Phys Chem Chem Phys 12:5064–6066

    Google Scholar 

  11. Pedone A, Charpentier T, Malavasi G, Menziani MC (2010) Chem Mater 22:5644–5652

    Article  CAS  Google Scholar 

  12. Charpentier T, Ispas S, Profeta M, Mauri F, Pickard CJ (2004) J Phys Chem B 108:4147–4161

    Article  CAS  Google Scholar 

  13. Pedone A, Pavone M, Menziani MC, Barone V (2008) J Chem Theory Comput 4:2130–2140

    Article  CAS  Google Scholar 

  14. Tossell JA, Horbach J (2005) J Phys Chem B 109:1794–1797

    Article  CAS  Google Scholar 

  15. Pickard CJ, Mauri F (2001) Phys Rev B 63:245101

    Article  Google Scholar 

  16. Profeta M, Mauri F, Pickard CJ (2003) J Am Chem Soc 125:541–548

    Article  CAS  Google Scholar 

  17. Profeta M, Benoit M, Mauri F, Pickard CJ (2004) J Am Chem Soc 126:12628–12635

    Article  CAS  Google Scholar 

  18. Tielens F, Gervais C, Lambert JF, Mauri F, Costa D (2008) Chem Mater 20:3336–3344

    Article  CAS  Google Scholar 

  19. Ferlat G, Charpentier T, Seitsonen AP, Takada A, Lazzeri M, Cormier L, Calas G, Mauri F (2008) Phys Rev Lett 101:065504

    Article  Google Scholar 

  20. Dick G, Overhauser AW (1958) Phys Rev 112:90

    Article  CAS  Google Scholar 

  21. Pedone A, Corno M, Civalleri B, Malavasi G, Menziani MC, Segre U, Ugliengo P (2007) J Mater Chem 17:2061–2068

    Article  CAS  Google Scholar 

  22. Tilocca A, de Leeuw NH, Cormack AN (2006) Phys Rev B 73:104209

    Article  Google Scholar 

  23. Smith W, Forester TR (1996) J Mol Graph 14:136

    Article  CAS  Google Scholar 

  24. Pedone A, Malavasi G, Menziani MC (2009) J Phys Chem C 113:15723–15730

    Article  CAS  Google Scholar 

  25. Segall MD, Lindan PJD, Probert MJ, Pickard CJ, Hasnip PJ, Clarck SJ, Payne MC (2002) J Phys: Condens Matter 14:2717

    Article  CAS  Google Scholar 

  26. Perdew JP, Burke K, Ernzerhof M (1996) Phys Rev Lett 77:3865

    Article  CAS  Google Scholar 

  27. Yates JR, Pickard CJ, Mauri F (2007) Phys Rev B 76:024401

    Article  Google Scholar 

  28. Monkhorst H, Pack JD (1976) Phys Rev B 13:5188

    Article  Google Scholar 

  29. Choi M, Matsunaga K, Oba F, Tanaka I (2009) J Phys Chem C 113:3869–3873

    Article  CAS  Google Scholar 

  30. Pyykkò P (2001) Mol Phys 99:1617

    Article  Google Scholar 

  31. Charpentier T, Kroll P, Mauri F (2009) J Phys Chem C 113:7917–7929

    Article  CAS  Google Scholar 

  32. Malavasi G, Menziani MC, Pedone A, Civalleri B, Corno M, Ugliengo P (2007) Theor Chem Acc 117:933–942

    Article  CAS  Google Scholar 

  33. Tilocca A (2007) Phys Rev B 76:224202

    Article  Google Scholar 

  34. Corno M, Pedone A, Dovesi R, Ugliengo P (2008) Chem Mater 20:56105621

    Article  Google Scholar 

  35. Corno M, Pedone A (2009) Chem Phys Lett 476:218–222

    Article  CAS  Google Scholar 

  36. Angeli F, Villain O, Schuller S, Ispas S, Charpentier T (2011) Geochim Cosmochim Acta 75:2453–2469

    Article  CAS  Google Scholar 

  37. Toplis MJ, Dingwell DB (1996) Trans Am Geophys Un 77:F848

    Google Scholar 

  38. Stebbins JF, Xu Z (1997) Nature 390:60–62

    Article  CAS  Google Scholar 

  39. Angeli F, Gaillard M, Jollivet P, Charpentier T (2007) Chem Phys Lett 440:324–328

    Article  CAS  Google Scholar 

  40. Benoit M, Profeta M, Mauri F, Pickard CJ, Tuckerman ME (2005) J Phys Chem B 109:6052–6060

    Article  CAS  Google Scholar 

  41. Pota M, Pedone A, Malavasi G, Durante C, Cocchi M, Menziani MC (2010) Comput Mater Sci 47:739

    Article  CAS  Google Scholar 

  42. Brown GE, Gibbs GV, Ribbe PH (1969) Am Miner 54:1044

    CAS  Google Scholar 

  43. Taylor M, Brown GE (1979) Geochim Cosmochim Acta 43:61

    Article  CAS  Google Scholar 

  44. Himmel B, Weigelt J, Gerber T, Nofz M (1991) J Non-Cryst Solids 136:27

    Article  CAS  Google Scholar 

  45. Petrov V, Gerber T, Himmel B (1998) Phys Rev B 58:11982

    Article  Google Scholar 

  46. Petrov V, Billinger SJL, Shastri SD, Himmel B (2000) Phys Rev Lett 85:3436

    Article  Google Scholar 

  47. Liu Y, Nekvasil H, Tossell JA (2005) J Phys Chem A 109:3060–3066

    Article  CAS  Google Scholar 

  48. Farnan I, Grandinetti PJ, Baltisberger JH, Stebbins JF, Werner U, Eastman MA, Pines A (1992) Nature 358:31

    Article  CAS  Google Scholar 

  49. Tossell JA (2001) Rev Miner 42:435

    Google Scholar 

Download references

Acknowledgments

The authors thank the Italian Ministry of University and Research for funding (Project COFIN2008, prot. 2008J9RNB3 “Integrazione Temporale per l’Evoluzione Molecolare”). A. P. thanks Dr. Thibault Charpentier of the CEA, IRAMIS, Service Interdisciplinaire sur les Systémes Moléculaires et Matériaux (Paris, France) for fruitful discussions.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Maria Cristina Menziani.

Additional information

Dedicated to Professor Vincenzo Barone and published as part of the special collection of articles celebrating his 60th birthday.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Pedone, A., Gambuzzi, E., Malavasi, G. et al. First-principles simulations of the 27Al and 17O solid-state NMR spectra of the CaAl2Si3O10 glass. Theor Chem Acc 131, 1147 (2012). https://doi.org/10.1007/s00214-012-1147-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s00214-012-1147-5

Keywords

Navigation