Skip to main content
Log in

A computational multiscale strategy to the study of amorphous materials

  • Regular Article
  • Published:
Theoretical Chemistry Accounts Aims and scope Submit manuscript

Abstract

A first step towards a computational multiscale approach has been adopted here to deal with the computational simulation of the Hench bioglass® 45S5, an amorphous material of 48.1% SiO2, 25.9% CaO, 22.2% Na2O and 3.7% P2O5 composition. Molecular dynamics simulations based on classical force fields followed by static minimizations on quenched structures have been run on a unit cell size suitable for subsequent ab initio calculations. The molecular mechanics optimized unit cell envisaging 78 atoms of Na12Ca7P2Si13 O44 composition and P1 symmetry has then been fully optimized (both unit cell parameters and internal coordinates) at B3LYP level in a periodic approach using gaussian basis sets of double-ζ quality and the development version of the CRYSTAL03 code. Comparison between the molecular mechanics and B3LYP optimized structures shows the latter to give a slightly higher density than the former, due to overestimation of the Si–O bonds and underestimation of the Si–O–Si and Si–O–P angles, respectively. Other geometrical features are in excellent agreement within the two approaches. Electronic properties of the Hench bioglass have been reported at B3LYP for the first time and both Mulliken charges and electronic band structure show a rather ionic character of the material, whereas a band gap of about 6.5 eV characterizes the bioglass as a strong insulator. Work presently in progress will soon allow the information to be transferred from the B3LYP calculations to the molecular mechanics engine in order to refine the presently available empirical force fields for complex ionic systems and their surfaces.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Ispas S, Benoit M, Jund P, Jullien R (2001). Phys Rev B 64:214206

    Article  Google Scholar 

  2. Tilocca A, de Leeuw NH (2006). J Mater Chem 16:1950

    Article  CAS  Google Scholar 

  3. Van Ginhoven RM, Jonsson H, Corrales LR (2005). Phys Rev B 71:024208

    Article  Google Scholar 

  4. Smith W, Greaves GN, Gillan MJ (1995). J Chem Phys 103:3091

    Article  CAS  Google Scholar 

  5. Oviedo J, Fernandez S (1998). Phys Rev B 58:9047

    Article  CAS  Google Scholar 

  6. Cormack AN, Cao Y (1996). Mol Eng 6:183:227

    Article  CAS  Google Scholar 

  7. Garofalini SH (2001) In: Cygan RT, Kubicki JD (eds) Reviews in mineralogy geochemistry, vol 42, Chapter 5. Geochemical Society, Mineralogical Society of America, Washington DC, pp 131–164

  8. Linati LL, G., Malavasi G, Menabue L, Menziani MC, Mustarelli LP, Segre U (2005). J Phys Chem B 109:4989

    Article  CAS  Google Scholar 

  9. Lusvardi G, Malavasi G, Menabue L, Menziani MC, Pedone A, Segre U (2005). J Phys Chem B 109:21586

    Article  CAS  Google Scholar 

  10. Lusvardi G, Menabue L, Menziani MC (2002). J Phys Chem B 106:9753

    Article  CAS  Google Scholar 

  11. Lusvardi G, Menabue L, Menziani MC, Segre U, Ubaldini A (2004). J Non-Cryst Solids 710:345–346

    Google Scholar 

  12. Pedone A, Malavasi G, Menziani MC, Cormack AN, Segre U (2006). J Phys Chem B 110:11780

    Article  CAS  Google Scholar 

  13. Wilson M, Walsh TR (2000). J Chem Phys 113:9180

    Article  CAS  Google Scholar 

  14. Tilocca A, de Leeuw NH, Cormack AN (2006). Phys Rev B 73:104209

    Article  Google Scholar 

  15. Saunders VR, Dovesi R, Roetti C, Orlando R, Zicovich-Wilson CM, Harrison NM, Doll K, Civalleri B, Bush IJ, D’Arco P, Llunell M (2003) CRYSTAL2003 User’s Manual. University of Torino, Torino

  16. Gale JD, Rohl AL (2003). Mol Simul 29:291

    Article  CAS  Google Scholar 

  17. Hoover WG (1985). Phys Rev A 31:1695

    Article  Google Scholar 

  18. Wright AC (1993) In: Simmons CJ, El-Bayoumi OH (eds) Experimental techniques of glass science. American Ceramic Society, Westerville, pp 205

  19. Ewald PP (1921). Ann Phys 64:253–287

    Article  Google Scholar 

  20. Gale JD (1996). Phil Mag B 73:3

    CAS  Google Scholar 

  21. Hay PJ, Wadt WR (1985). J Chem Phys 82:299

    Article  CAS  Google Scholar 

  22. Hay PJ, Wadt WR (1985). J Chem Phys 82:284

    Article  Google Scholar 

  23. Habas MP, Dovesi R, Lichanot A (1998). J Phys Cond Matter 10:6897

    Article  CAS  Google Scholar 

  24. Prencipe M, Pascale F, Zicovich-Wilson CM, Saunders VR, Orlando R, Dovesi R (2004). Phys Chem Miner 31:1–6

    Article  Google Scholar 

  25. Aprà E, Causà M, Prencipe M, Dovesi R, Saunders VR (1993). J Phys Condens Matter 5:2969

    Article  Google Scholar 

  26. Dovesi R, Roetti C, FreyriaFava C, Prencipe M, Saunders VR (1991). Chem Phys 156:11

    Article  CAS  Google Scholar 

  27. Lichanot A, Aprà E, Dovesi R (1993). Phys State Solids (b) 177:157

    CAS  Google Scholar 

  28. Dovesi R, FreyriaFava C, Aprà E, Saunders VR, Harrison NM (1992). Phil Trans R Soc Lond A 341:203

    CAS  Google Scholar 

  29. Becke AD (1993). J Chem Phys 98:5648

    Article  CAS  Google Scholar 

  30. Lee C, Yang W, Parr RG (1988). Phys Rev B 37:785

    Article  CAS  Google Scholar 

  31. Corà F, Alfredsson M, Mallia G, Middlemiss DS, Mackrodt WC, Dovesi R, Orlando R (2004). Struct Bond 113:171

    Google Scholar 

  32. Dovesi R, Civalleri B, Orlando R, Roetti C, Saunders VR (2005). Rev Comp Chem 21:1

    Article  CAS  Google Scholar 

  33. Pascale F, Ugliengo P, Civalleri B, Orlando R, D’Arco P, Dovesi R (2002). J Chem Phys 117:5337–5346

    Article  CAS  Google Scholar 

  34. Pascale F, Ugliengo P, Civalleri B, Orlando R, D’Arco P, Dovesi R (2004). J Chem Phys 121:1005–1013

    Article  CAS  Google Scholar 

  35. Pascale F, Zicovich-Wilson CM, Orlando R, Roetti C, Ugliengo P, Dovesi R (2005). J Phys Chem B 109:6146

    Article  CAS  Google Scholar 

  36. Monkhorst HJ, Pack JD (1976). Phys Rev B 8:5188–5192

    Article  Google Scholar 

  37. Yuan X, Cormack AN (2002). Comput Mater Sci 24:343–360

    Article  CAS  Google Scholar 

  38. Malavasi G, Menziani MC, Pedone A, Segre U (2006). J Non-Cryst Solids 352:285

    Article  CAS  Google Scholar 

  39. Ugliengo P (2005) MOLDRAW: a molecular graphics program to display and manipulate molecular structures. Available at: http://www.moldraw.unito.it

  40. Gaskell PH (1995). J Non-Cryst Solids 9:192–193

    Google Scholar 

  41. Bar MR, Sauer J (1994). Chem Phys Lett 226:405

    Article  Google Scholar 

  42. Hench LL, Splinter RJ, Allen WC, Greenlee TK (1971). J Biomed Mater Res Symp 2:117

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to M. C. Menziani or P. Ugliengo.

Electronic supplementary material

Below is the electronic supplementary material.

ESM 1 (DOC 98 kb)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Malavasi, G., Menziani, M.C., Pedone, A. et al. A computational multiscale strategy to the study of amorphous materials. Theor Chem Account 117, 933–942 (2007). https://doi.org/10.1007/s00214-006-0214-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00214-006-0214-1

Keywords

Navigation