Skip to main content
Log in

Higher-order correlated calculations based on fragment molecular orbital scheme

  • Regular Article
  • Published:
Theoretical Chemistry Accounts Aims and scope Submit manuscript

Abstract

We have developed a new module for higher-order correlated methods up to coupled-cluster singles and doubles with perturbative triples (CCSD(T)). The matrix-matrix operations through the DGEMM routine were pursued for a number of contractions. This code was then incorporated into the ABINIT-MPX program for the fragment molecular orbital (FMO) calculations. Intra-fragment processings were parallelized with OpenMP in a node-wise fashion, whereas the message passing interface (MPI) was used for the fragment-wise parallelization over nodes. Our new implementation made the FMO-based higher-order calculations applicable to realistic proteins. We have performed several benchmark tests on the Earth Simulator (ES2), a massively parallel computer. For example, the FMO-CCSD(T)/6-31G job for the HIV-1 protease (198 amino acid residues)–lopinavir complex was completed in 9.8 h with 512 processors (or 64 nodes). Another example was the influenza neuraminidase (386 residues) with oseltamivir calculated at the full fourth-order Møller–Plesset perturbation level (MP4), of which job timing was 10.3 h with 1024 processors. The applicability of the methods to commodity cluster computers was tested as well.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

Notes

  1. http://www.jamstec.go.jp/es/en/.

  2. http://www.netlib.org/blas/.

  3. http://www.mpi-forum.org/.

  4. http://www.openmp.org/.

References

  1. Kitaura K, Ikeo E, Asada T, Nakano T, Uebayasi M (1999) Chem Phys Lett 313:701

    Article  CAS  Google Scholar 

  2. Fedorov DG, Kitaura K (2007) J Phys Chem A 111:6904

    Article  CAS  Google Scholar 

  3. Gordon MS, Mullin JM, Pruitt SR, Roskop LB, Slipchenko LV, Boatz JA (2009) J Phys Chem B 113:9646

    Article  CAS  Google Scholar 

  4. Fedorov, DG, Kitaura, K (eds) (2009) The fragment molecular orbital method: practical applications to large molecular systems. CRC Press, Boca Raton

    Google Scholar 

  5. Imamura A, Aoki Y, Maekawa K (1991) J Chem Phys 95:5419

    Article  CAS  Google Scholar 

  6. Aoki Y, Imamura A (1992) J Chem Phys 97:8432

    Article  CAS  Google Scholar 

  7. Yang W (1991) Phys Rev Lett 66:1438

    Article  CAS  Google Scholar 

  8. Akama T, Kobayashi M, Nakai H (2007) J Comput Chem 28:2003

    Article  CAS  Google Scholar 

  9. He X, Merz KM Jr (2010) J Chem Theor Comp 6:405

    Article  CAS  Google Scholar 

  10. Babu K, Gadre SR (2003) J Comput Chem 24:484

    Article  CAS  Google Scholar 

  11. Zhang DW, Zhang JZ (2003) J Chem Phys 119:3599

    Article  CAS  Google Scholar 

  12. Huang L, Massa L, Karle J (2005) Int J Quant Chem 103:808

    Article  CAS  Google Scholar 

  13. Li W, Fang T, Li S (2006) J Chem Phys 124:154102

    Article  CAS  Google Scholar 

  14. Li W, Li S, Jiang Y (2007) J Phys Chem A 111:2193

    Article  CAS  Google Scholar 

  15. Gao J (1997) J Phys Chem B 101:657

    Article  CAS  Google Scholar 

  16. Song L, Han J, Lin YI, Xie W, Gao J (2009) J Phys Chem A 113:11656

    Article  CAS  Google Scholar 

  17. Day NP, Jensen HJ, Gordon SM, Webb PS (1996) J Chem Phys 105:1968

    Article  CAS  Google Scholar 

  18. Nagata T, Fedorov DG, Kitaura K, Gordon MS (2009) J Chem Phys 131:024101

    Article  CAS  Google Scholar 

  19. Hirata S, Valiev M, Dupuis M, Xantheas SS, Sugiki S, Sekino H (2005) Mol Phys 103:2255

    Article  CAS  Google Scholar 

  20. Kamiya M, Hirata S, Valiev M (2008) J Chem Phys 128:074103

    Article  CAS  Google Scholar 

  21. Dahlke EE, Truhlar DG (2007) J Chem Theory Comput 3:46

    Article  CAS  Google Scholar 

  22. Wang B, Truhlar DG (2010) J Chem Theor Comp 6:359

    Article  CAS  Google Scholar 

  23. Beran GJO (2009) J Chem Phys 130:164115

    Article  CAS  Google Scholar 

  24. Söderhjelm P, Ryde U (2009) J Phys Chem A 113:617

    Article  CAS  Google Scholar 

  25. Mayhall NJ, Raghavachari K (2011) J Chem Theory Comp 7:1336

    Article  CAS  Google Scholar 

  26. Stoll H (1992) Chem Phys Lett 191:548

    Article  CAS  Google Scholar 

  27. Paulus B, Fulde P, Stoll H (1995) Phys Rev B 51:10572

    Article  CAS  Google Scholar 

  28. Seijo L, Barandiarán Z (2004) J Chem Phys 121:6698

    Article  CAS  Google Scholar 

  29. Seijo L, Barandiarán Z, Soler JM (2007) Theor Chem Acc 118:541

    Article  CAS  Google Scholar 

  30. Szabo A, Ostlund NS (1982) Modern quantum chemistry. MacMillan, New York

    Google Scholar 

  31. Shavitt I, Bartlett RJ (2009) Many-body methods in chemistry and physics. Cambridge Univeristy Press, Cambridge

    Book  Google Scholar 

  32. Bartlett RJ, Musiał M (2007) Rev Mod Phys 79:291

    Article  CAS  Google Scholar 

  33. Urban M, Noga J, Cole SJ, Bartlett RJ (1985) J Chem Phys 83:4041

    Article  CAS  Google Scholar 

  34. Raghavachari K, Trucks GW, Pople JA, Head-Gordon M (1989) Chem Phys Lett 157:479

    Google Scholar 

  35. Fedorov DG, Olson RM, Kitaura K, Gordon MS, Koseki S (2004) J Comp Chem 25:872

    Article  CAS  Google Scholar 

  36. Schmidt MW, Baldridge KK, Boatz JA, Elbert ST, Gordon MS, Jensen JH, Koseki S, Matsunaga N, Nguyen KA, Su SJ, Windus TL, Dupuis M, Montgomery JA (1993) J Comp Chem 14:347 GAMESS

    Article  Google Scholar 

  37. Fedorov DG, Kitaura K (2004) J Chem Phys 121:2483

    Article  CAS  Google Scholar 

  38. Fedorov DG, Ishimura K, Ishida K, Kitaura K, Pulay P, Nagase S (2007) J Comp Chem 28:1476

    Article  CAS  Google Scholar 

  39. Fedorov DG, Kitaura K (2005) J Chem Phys 123:134103

    Article  CAS  Google Scholar 

  40. Nakano T, Kaminuma T, Sato T, Fukuzawa K, Akiyama Y, Uebayasi M, Kitaura K (2002) Chem Phys Lett 351:475

    Article  CAS  Google Scholar 

  41. Mochizuki Y, Nakano T, Koikegami S, Tanimori S, Abe Y, Nagashima U, Kitaura K (2004) Theor Chem Acc 112:442

    Article  CAS  Google Scholar 

  42. Mochizuki Y, Koikegami S, Nakano T, Amari S, Kitaura K (2004) Chem Phys Lett 396:473

    Article  CAS  Google Scholar 

  43. Mochizuki Y, Yamashita K, Murase T, Nakano T, Fukuzawa K, Takematsu K, Watanabe H, Tanaka S (2008) Chem Phys Lett 457:396

    Article  CAS  Google Scholar 

  44. Mochizuki Y, Yamashita K, Fukuzawa K, Takematsu K, Watanabe H, Taguchi N, Okiyama Y, Tsuboi M, Nakano T, Tanaka S (2010) Chem Phys Lett 493:346

    Article  CAS  Google Scholar 

  45. Ishikawa T, Kuwata K (2009) J Comp Chem 30:2594

    Article  CAS  Google Scholar 

  46. Pedersen TB, Aquilante F, Lindh R (2009) Theor Chem Acc 124:1

    Article  CAS  Google Scholar 

  47. Ishikawa T, Kuwata K (2009) Chem Phys Lett 474:195

    Article  CAS  Google Scholar 

  48. Okiyama Y, Nakano T, Yamashita K, Mochizuki Y, Taguchi N, Tanaka S (2010) Chem Phys Lett 490:84

    Article  CAS  Google Scholar 

  49. Rahalkar AP, Katouda M, Gadre SR, Nagase S (2010) J Comp Chem 31:2405

    CAS  Google Scholar 

  50. Kobayashi M, Akama T, Nakai H (2006) J Chem Phys 125:204106

    Article  CAS  Google Scholar 

  51. Kobayashi M, Imamura Y, Nakai H (2007) J Chem Phys 127:074103

    Article  CAS  Google Scholar 

  52. Kobayashi M, Nakai H (2009) J Chem Phys 129:044103

    Article  CAS  Google Scholar 

  53. Makowski M, Korchowiec J, Gu FL, Aoki Y (2010) J Comp Chem 31:1733

    CAS  Google Scholar 

  54. Ohnishi Y, Hirata S (2010) J Chem Phys 133:034106

    Article  CAS  Google Scholar 

  55. Pulay P (1983) Chem Phys Lett 100:151

    Article  CAS  Google Scholar 

  56. Saebø S, Pulay P (1987) J Chem Phys 86:914

    Article  Google Scholar 

  57. Saebø S, Pulay P (1993) Ann Rev Phys Chem 44:213

    Article  Google Scholar 

  58. Hampel C, Werner HJ (1996) J Chem Phys 104:6286

    Article  CAS  Google Scholar 

  59. Schütz M, Hetzer G, Werner HJ (1999) J Chem Phys 111:5691

    Article  Google Scholar 

  60. Schütz M, Werner HJ (2001) J Chem Phys 114:661

    Article  Google Scholar 

  61. Friedrich J, Hanrath M, Dolg M (2007) J Chem Phys 126:154110

    Article  CAS  Google Scholar 

  62. Friedrich J, Dolg M (2008) J Chem Phys 129:244105

    Article  CAS  Google Scholar 

  63. Friedrich J, Dolg M (2009) J Chem Theory Comp 5:287

    Article  CAS  Google Scholar 

  64. Scuseria GE, Ayala PY (1999) J Chem Phys 111:8330

    Article  CAS  Google Scholar 

  65. Subotnik JE, Head-Gordon M (2005) J Chem Phys 123:064108

    Article  CAS  Google Scholar 

  66. Subotnik JE, Sodt A, Head-Gordon M (2008) J Chem Phys 128:034103

    Article  CAS  Google Scholar 

  67. Li S, Ma J, Jiang Y (2002) J Comput Chem 23:237

    Article  CAS  Google Scholar 

  68. Li W, Piecuch P, Gour JR, Li S (2009) J Chem Phys 131:114109

    Article  CAS  Google Scholar 

  69. Li W, Piecuch P (2010) J Phys Chem A 114:8644

    Article  CAS  Google Scholar 

  70. Ziółkowski M, Jansík B, Kjaergaard T, Jørgensen P (2010) J Chem Phys 133:014107

    Article  CAS  Google Scholar 

  71. Scuseria GE, Janssen CL, Schaefer HF III (1988) J Chem Phys 89:7382

    Article  CAS  Google Scholar 

  72. Kobayashi R, Rendell AP (1997) Chem Phys Lett 265:1

    Article  CAS  Google Scholar 

  73. Pople JA, Head-Gordon M, Raghavachari K (1987) J Chem Phys 87:5968

    Article  CAS  Google Scholar 

  74. Pople JA, Head-Gordon M, Raghavachari K (1988) Int J Quant Chem Symp 22:377

    Article  CAS  Google Scholar 

  75. Meyer W (1976) J Chem Phys 64:2901

    Article  CAS  Google Scholar 

  76. Pulay P, Saebø S, Meyer W (1984) J Chem Phys 81:1901

    Article  CAS  Google Scholar 

  77. Koch H, Jensen HJA, Jørgensen P, Helgaker T, Scuseria GE, Schaefer HF III (1990) J Chem Phys 92:4924

    Article  CAS  Google Scholar 

  78. Hampel C, Peterson KA, Werner HJ (1992) Chem Phys Lett 190:1

    Article  CAS  Google Scholar 

  79. Scuseria GE, Schaefer HF III (1989) J Chem Phys 90:3700

    Article  CAS  Google Scholar 

  80. Lee TJ, Rendell AP, Taylor PR (1990) J Phys Chem 94:5463

    Article  CAS  Google Scholar 

  81. Ahlrichs R (1979) Comp Phys Comm 17:31

    Article  CAS  Google Scholar 

  82. Neese F, Hansen A, Wennmohs F, Grimme S (2009) Acc Chem Res 42:641

    Article  CAS  Google Scholar 

  83. Taube AG, Bartlett RJ (2009) J Chem Phys 130:144112

    Article  CAS  Google Scholar 

  84. Rendell AP, Lee TJ, Komornicki A (1991) Chem Phys Lett 178:462

    Article  CAS  Google Scholar 

  85. Baker DJ, Moncrieff D, Saunders VR, Wilson S (1991) Comp Phys Comm 62:25

    Article  CAS  Google Scholar 

  86. Rendell AP, Lee TJ, Lindh R (1992) Chem Phys Lett 194:84

    Article  CAS  Google Scholar 

  87. Moncrieff D, Saunders VR, Wilson S (1992) Comp Phys Comm 70:345

    Article  CAS  Google Scholar 

  88. Rendell AP, Guest MF, Kendall RA (1993) J Comp Chem 1993(14):1429

    Article  Google Scholar 

  89. Rendell AP, Lee TJ, Komornicki A, Wilson S (1993) Theor Chim Acta 84:271

    Article  Google Scholar 

  90. Nieplocha J, Harrison RJ, Littlefield RJ (1996) J Supercomp 10:169

    Google Scholar 

  91. Watts JD (2000) Para Comp 26:857

    Article  Google Scholar 

  92. Koch H, Sánchezde Merás A, Helgaker T, Christiansen O (1996) J Chem Phys 104:4157

    Article  CAS  Google Scholar 

  93. Piecuch P, Landman JI (2000) Para Comp 26:913

    Article  Google Scholar 

  94. Hirata S (2003) J Phys Chem A 107:9887

    Article  CAS  Google Scholar 

  95. Piecuch P, Hirata S, Kowalski K, Fan PD, Windus TL (2006) Int J Quant Chem 106:79

    Article  CAS  Google Scholar 

  96. Auer AA, Baumgartner G, Bernholdt DE, Bibireata A, Choppella V, Cociorva D, Gao X, Harrison R, Krishanmoorthy S, Krishnan S, Lu Q, Lam C, Nooijen M, Pitzer R, Ramanujam J, Sadayappan P, Sibiryakov A (2006) Mol Phys 104:211

    Article  CAS  Google Scholar 

  97. Fletcher GD, Schmidt MW, Bode BM, Gordon MS (2000) Comp Phys Comm 128:190

    Article  CAS  Google Scholar 

  98. Olson RM, Bentz JL, Kendall RA, Schmidt MW, Gordon MS (2007) J Chem Theory Comp 3:1312

    Article  Google Scholar 

  99. Bentz JL, Olson RM, Gordon MS, Schmidt MW, Kendall RA (2007) Comp Phys Comm 176:589

    Article  CAS  Google Scholar 

  100. Ford AR, Janowski T, Pulay P (2007) J Comp Chem 28:1215

    Article  CAS  Google Scholar 

  101. Janowski T, Ford AR, Pulay P (2007) J Chem Theory Comp 3:1368

    Article  CAS  Google Scholar 

  102. Janowski T, Pulay P (2008) J Chem Theory Comp 4:1585

    Article  CAS  Google Scholar 

  103. Baker J, Wolinski K, Malagoli M, Kinghorn D, Wolinski P, Magyarfalvi G, Saebo S, Janowski T, Pulay P (2009) J Comp Chem 30:317

    Article  CAS  Google Scholar 

  104. Harding ME, Metzroth T, Gauss J, Auer AA (2008) J Chem Theory Comp 4:64

    Article  CAS  Google Scholar 

  105. Prochnow E, Harding ME, Gauss J (2010) J Chem Theory Comp 6:2339

    Article  CAS  Google Scholar 

  106. Lotrich V, Flocke N, Ponton M, Yau AD, Perera A, Deumens E, Bartlett RJ (2008) J Chem Phys 128:194104

    Article  CAS  Google Scholar 

  107. Tomasz Kuś, Lotrich VF, Bartlett RJ (2009) J Chem Phys 130:124122

    Article  CAS  Google Scholar 

  108. Valiev M, Bylaska EJ, Govind N, Kowalski K, Straatsma TP, Van Dam HJJ, D. Wang, Nieplocha J, Apra E, Windus TL, de Jong WA (2010) Comp Phys Comm 181:1477

    Article  CAS  Google Scholar 

  109. Fan PD, Valiev M, Kowalski K (2008) Chem Phys Lett 458:205

    Article  CAS  Google Scholar 

  110. Kowalski K, Hammond JR, DeJong WA, Sadlej AJ (2008) J Chem Phys 129:226101

    Article  CAS  Google Scholar 

  111. Aprà E, Harrison RJ, Shelton WA, Tipparaju V, Vázquez-Mayagoitia A (2009) J Phys Conf Ser 180:012027

    Article  CAS  Google Scholar 

  112. Van Dam HJJ, Vishnu A, de Jong WA (2011) J Chem Theor Comp 7:66

    Article  CAS  Google Scholar 

  113. Sosa CP, Scalmani G, Gomperts R, Frisch MJ (2000) Para Comp 26:843

    Article  Google Scholar 

  114. Shellman SD, Lewis JP, Glaesemann KR, Sikorski K, Voth GA (2003) J Comp Phys 188:1

    Article  CAS  Google Scholar 

  115. Rudberg E, Rubensson EH, Sałek P (2008) J Chem Phys 128:184106

    Article  CAS  Google Scholar 

  116. Kurashige Y, Yanai T (2009) J Chem Phys 130:234114

    Article  CAS  Google Scholar 

  117. Woods CJ, Brown P, Manby FR (2009) J Chem Theor Comp 5:1776

    Article  CAS  Google Scholar 

  118. Ishimura K, Kuramoto K, Ikuta Y, Hyodo S (2010) J Chem Theor Comp 6:1075

    Article  CAS  Google Scholar 

  119. Hohenstein EG, Sherrill CD (2010) J Chem Phys 133:014101

    Google Scholar 

  120. Almlöf J, Faegri K, Korsell K (1982) J Comp Chem 3:385

    Article  Google Scholar 

  121. Pople JA, Binkley S, Seeger R (1976) Int J Quant Chem Symp 10:1

    Article  CAS  Google Scholar 

  122. Taylor PR (1987) Int J Quant Chem 31:521

    Article  CAS  Google Scholar 

  123. Saebø S, Almlöf J (1989) Chem Phys Lett 154:83

    Article  Google Scholar 

  124. Schütz M, Lindh R, Werner HJ (1999) Mol Phys 96:719

    Article  Google Scholar 

  125. Foresman JB, Frisch A (1996) Exploring chemistry with electronic structure methods, 2nd edn. Gaussian Inc., Pittsburgh

    Google Scholar 

  126. Szakács P, Surján P (2008) Intern J Quant Chem 108:2043

    Article  CAS  Google Scholar 

  127. Pulay P (1980) Chem Phys Lett 73:393

    Article  CAS  Google Scholar 

  128. Scuseria GE, Lee TJ, Schaefer HF III (1986) Chem Phys Lett 130:236

    Article  CAS  Google Scholar 

  129. Mochizuki Y, Fukuzawa K, Kato A, Tanaka S, Kitaura K, Nakano T (2005) Chem Phys Lett 410:247

    Article  CAS  Google Scholar 

  130. Amari S, Aizawa M, Zhang J, Fukuzawa K, Mochizuki Y, Iwasawa I, Nakata K, Chuman H, Nakano T (2006) J Chem Inf Model 46:221

    Article  CAS  Google Scholar 

  131. Fedorov DG, Kitaura K (2007) J Comp Chem 28:222

    Article  CAS  Google Scholar 

  132. Nakano T, Kaminuma T, Sato T, Akiyama Y, Uebayasi M, Kitaura K (2000) Chem Phys Lett 318:614

    Article  CAS  Google Scholar 

  133. Obara S, Saika A (1986) J Chem Phys 84:3963

    Article  CAS  Google Scholar 

  134. Nishiguchi A, Orii S, Yabe T (1985) J Comp Phys 61:519

    Article  Google Scholar 

  135. Mochizuki Y, Matsumura M, Yokura T, Hirahara Y, Imamura T (2002) J Nucl Sci Tech 39:195

    Article  CAS  Google Scholar 

  136. Janssen CL, Nielsen IMB (2008) Parallel computing in quantum chemistry. CRC Press, Boca Raton

    Google Scholar 

  137. Iwata T, Fukuzawa K, Nakajima K, Aida-Hyugaji S, Mochizuki Y, Watanabe H, Tanaka S (2008) Comp Bio Chem 32:198

    Article  CAS  Google Scholar 

  138. Takematsu K, Fukuzawa K, Omagari K, Nakajima S, Nakajima K, Mochizuki Y, Nakano T, Watanabe H, Tanaka S (2009) J Phys Chem B 113:4991

    Article  CAS  Google Scholar 

  139. Yoshioka A, Fukuzawa K, Mochizuki Y, Yamashita K, Nakano T, Okiyama Y, Nobusawa E, Nakajima K, Tanaka S (2011) J Mol Graph Modell 30:110

    Google Scholar 

  140. Pitoňák M, Neogrády P, Černý J, Grimme S, Hobza P (2009) Chem Phys Chem 10:282

    Article  CAS  Google Scholar 

  141. Chiles RA, Dykstra CE (1981) J Chem Phys 74:4544

    Article  CAS  Google Scholar 

  142. Handy NC, Pople JA, Head-Gordon M, Raghavachari K, Trucks GW (1989) Chem Phys Lett 164:185

    Article  CAS  Google Scholar 

  143. Scuseria GE (1994) Chem Phys Lett 226:251

    Article  CAS  Google Scholar 

  144. Koch H, Sánchez de Merás A, Pedersen TB (2003) J Chem Phys 21:1981

    Google Scholar 

  145. Lee TJ, Huang X, Dateo CE (2009) Mol Phys 107:1139

    Article  CAS  Google Scholar 

  146. Sánchezde Merás AMJ, Koch H, Cuesta IG, Boman L (2010) J Chem Phys 132:204105

    Article  CAS  Google Scholar 

  147. Neogrády P, Pitoňák M, Urban M (2005) Mol Phys 103:2141

    Article  CAS  Google Scholar 

  148. Boys SF, Bernardi F (1970) Mol Phys 19:533

    Article  Google Scholar 

  149. Okiyama Y, Fukuzawa K, Yamada H, Mochizuki Y, Nakano T, Tanaka S (2011) Chem Phys Lett 509:67

    Article  CAS  Google Scholar 

  150. de Jong WA, Bylaska E, Govind N, Janssen CL, Kowalski K, Müller T, Nielsen IMB, van Dam HJJ, Veryazov V, Lindh R (2010) Phys Chem Chem Phys 6:6896

    Article  CAS  Google Scholar 

  151. Nakano T, Mochizuki Y, Yamashita K, Watanabe C, Fukuzawa K, Segawa K, Okiyama Y, Tsukamoto T, Tanaka S (to be published)

  152. Cai J, Rendell AP, Strazdins PE, Wong HJ (2008) Proceeding of 13th IEEE Asia-Pacific computer systems architecture conference:1

  153. Yang R, Cai J, Rendell AP, Ganesh V (2009) International Workshop on OpenMP 2009, LNCS 5568:53

Download references

Acknowledgments

This work was supported by the CREST project operated by the Japan Science and Technology Agency (JST) and also by a Grant-in-Aid for Scientific Research on Priority Area "Molecular Theory for Real Systems" from the Ministry of Education, Culture, Sports, Science and Technology of Japan (MEXT). YM and TN are indebted for various supports by the RISS project at the Institute of Industrial Science (IIS) of the University of Tokyo. YM acknowledges the SFR-aid by Rikkyo University as well. Computing resource for all the calculations on the Earth Simulator (ES2) was supplied by the Japan Agency for Marine-Earth Science and Technology (JAMSTEC). The authors thank Dr. Yuto Komeiji for critical comments on the manuscript. Finally, YM is grateful to the late Dr. Hideki Katagiri, who passed away in December 2010, for stimulating discussions on CC theories at the early stage of this work.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Yuji Mochizuki.

Additional information

Dedicated to Professor Shigeru Nagase on the occasion of his 65th birthday and published as part of the Nagase Festschrift Issue.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Mochizuki, Y., Yamashita, K., Nakano, T. et al. Higher-order correlated calculations based on fragment molecular orbital scheme. Theor Chem Acc 130, 515–530 (2011). https://doi.org/10.1007/s00214-011-1036-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00214-011-1036-3

Keywords

Navigation