Skip to main content
Log in

Density functional theory study on quasi-three-dimensional oxidized platinum surface: phase transition between α-PtO2-like and β-PtO2-like structures

  • Regular Article
  • Published:
Theoretical Chemistry Accounts Aims and scope Submit manuscript

Abstract

We investigate the oxidation process of a platinum surface by using the density functional theory approach under the periodic boundary condition. This oxidation process has received much attention because it is an initial step in the dissolution of platinum catalysts in polymer electrolyte fuel cells. In this research, we determine the optimized structure of α -PtO2-like and β-PtO2-like oxidized platinum surfaces, which have recently been proposed on the basis of in situ X-ray diffraction analysis, at the Kohn Sham density functional theory (KS-DFT) generalized gradient approximation (GGA) level of theory. We discuss the phase transition from the α-PtO2-like surface to the β-PtO2-like surface, including the place-exchange reaction between oxygen and platinum atoms. We propose an intermediate structure in the phase transition, and show that the β-PtO2-like structure can be formed directly from this intermediate structure.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

References

  1. Savinova DV, Molodkina EB, Danilov AI, Polukarov YM (2004) Russ J Electrochem 40:683

    Article  CAS  Google Scholar 

  2. Nørskov JK, Rossmeisl J, Logadottir A, Lindqvist L, Kitchin JR, Bligaard T, Jónsson H (2004) J Phys Chem B 108:17886

    Article  Google Scholar 

  3. Shubina TE, Harting C, Koper MTM (2004) Phys Chem Chem Phys 6:4215

    Article  CAS  Google Scholar 

  4. Teliska M, O’Grady WE, Ramaker DE (2005) J Phys Chem B 109:8076

    Article  CAS  Google Scholar 

  5. Roth C, Benker N, Buhrmester T, Mazurek M, Loster M, Fuess H, Koningsberger DC, Ramaker DE (2005) J Am Chem Soc 127:14607

    Article  CAS  Google Scholar 

  6. Walch S, Dhanda A, Aryanpour M, Pitsch H (2008) J Phys Chem C 112:8464

    Article  CAS  Google Scholar 

  7. Ma Y, Balbuena PB (2008) J Phys Chem C 112:14520

    Article  CAS  Google Scholar 

  8. Choe Y-K, Tsuchida E, Ikeshoji T, Yamakawa S, Hyodo S (2008) J Phys Chem B 112:11586

    Article  CAS  Google Scholar 

  9. Choe Y-K, Tsuchida E, Ikeshoji T, Yamakawa S, Hyodo S (2009) Phys Chem Chem Phys 11:3892

    Article  CAS  Google Scholar 

  10. Borup R, Meyers J, Pivovar B, Kim YS, Mukundan R, Garland N, Myers D, Wilson M, Garzon F, Wood D, Zelenay P, More K, Stoh K, Zawodzinski T, Boncella J, McGrath JE, Inaba M, Miyatake K, Hori M, Ota K, Ogumi Z, Miyata S, Nishikata A, Siroma Z, Uchimoto Y, Yasuda K, Kimijima K, Iwashita N (2007) Chem Rev 107:3904

    Article  CAS  Google Scholar 

  11. Xie J, Wood-III DL, Wayne DM, Zawodzinski TA, Atanassov P, Borup RL (2005) J Electrochem Soc 152:A104

    Article  CAS  Google Scholar 

  12. Ferreira PJ, Ia-O’ GJ, Shao-Horn Y, Morgan D, Makharia R, Kocha S, Gasteiger HA (2005) J Electrochem Soc 152:A2256

    Article  Google Scholar 

  13. Yasuda K, Taniguchi A, Akita T, Ioroi T, Siroma Z (2006) Phys Chem Chem Phys 8:746

    Article  CAS  Google Scholar 

  14. Jerkiewicz G, Vatankhah G, Lessard J, Soriaga MP, Park Y (2004) Electrochim Acta 49:1451

    CAS  Google Scholar 

  15. You H, Zurawski DJ, Nagy Z, Yonco RM (1994) J Chem Phys 100:4699

    Article  CAS  Google Scholar 

  16. Nagy Z, You H (2002) Electrochim Acta 47:3037

    Article  CAS  Google Scholar 

  17. Darling RM, Meyers JP (2003) J Electrochem Soc 150:A1523

    Article  CAS  Google Scholar 

  18. Alsabet M, Grden M, Jerkiewicz G (2006) J Electroanal Chem 589:120

    Article  CAS  Google Scholar 

  19. Gu Z, Balbuena PB (2006) J Phys Chem A 110:9783

    Article  CAS  Google Scholar 

  20. Gu Z, Balbuena PB (2007) J Phys Chem C 111:17388

    Article  CAS  Google Scholar 

  21. Gu Z, Balbuena PB (2008) J Phys Chem C 112:5057

    Article  CAS  Google Scholar 

  22. Roudgar A, Eikerling M, van-Santen R (2010) Phys Chem Chem Phys 12:614

    Article  CAS  Google Scholar 

  23. Gu Z, Balbuena PB (2007) J Phys Chem C 111:9877

    Article  CAS  Google Scholar 

  24. Imai H, Izumi K, Matsumoto M, Kubo Y, Kato K, Imai Y (2009) J Am Chem Soc 131:6293

    Article  CAS  Google Scholar 

  25. Tian F, Anderson AB (2008) J Phys Chem C 112:18566

    CAS  Google Scholar 

  26. Delley B (1990) J Chem Phys 92:508

    Article  CAS  Google Scholar 

  27. Delley B (2000) J Chem Phys 113:7756

    Article  CAS  Google Scholar 

  28. Perdew JP, Chevary JA, Vosko SH, Jackson KA, Pederson MR, Singh DJ, Fiolhais C (1992) Phys Rev B 46:6671

    Article  CAS  Google Scholar 

  29. Perdew JP, Burke K, Ernzerhof M (1996) Phys Rev Lett 77:3865

    Article  CAS  Google Scholar 

  30. Hamada I, Morikawa Y (2008) J Phys Chem C 112:10889

    Article  CAS  Google Scholar 

  31. Mitsushima S, Koizumi Y, Uzuka S, Ota K (2008) Electrochim Acta 54:455

    Article  CAS  Google Scholar 

  32. Yadav AP, Nishikata A, Tsuru T (2007) Electrochim Acta 52:7444

    Article  CAS  Google Scholar 

  33. Suzuki K, Kuroiwa Y, Takami S, Kubo M, Miyamoto A, Imamura A (2002) Solid State Ion 152–153:273

    Article  Google Scholar 

  34. Jalkanen KJ, Degtyarenko IM, Nieminen RM, Cao X, Nafie LA, Zhu F, Barron LD (2008) Theor Chem Acc 119:191

    Article  CAS  Google Scholar 

  35. Otani M, Sugino O (2006) Phys Rev B 73:115407

    Article  Google Scholar 

  36. Otani M, Hamada I, Sugino O, Morikawa Y, Okamoto Y, Ikeshoji T (2008) Phys Chem Chem Phys 10:3609

    Article  CAS  Google Scholar 

  37. Shimazaki T, Asai Y (2008) Chem Phys Lett 466:91

    Article  CAS  Google Scholar 

  38. Shimazaki T, Asai Y (2009) J Chem Theory Comput 5:136

    Article  CAS  Google Scholar 

  39. Shimazaki T, Asai Y (2009) J Chem Phys 130:164702

    Article  Google Scholar 

  40. Shimazaki T, Hirata S (2009) Int J Quantum Chem 109:2953

    Article  CAS  Google Scholar 

  41. Hirata S, Shimazaki T (2009) Phys Rev B 80:085118

    Article  Google Scholar 

  42. Hirata S, Sode O, Keceli M, Shimazaki T (2010) In: Manby FR (ed) Accurate condensed-phase quantum chemistry. CRC Press, Boca Raton, p 129

    Google Scholar 

  43. Shimazaki T, Asai Y (2010) J Chem Phys 132:224105

    Article  Google Scholar 

  44. Shimazaki T, Kubo M (2011) Chem Phys Lett 503:316

    Article  CAS  Google Scholar 

  45. Shimazaki T, Asai Y (2011) Gaussian and forueir transform (GFT) method and screened Hartree-Fock exchange potential for first-principles band structure calculations. In: Nikolic GS (ed) Fourier transform—approach to scientific principles. Rijeka, Intech

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Tomomi Shimazaki.

Additional information

Dedicated to Professor Akira Imamura on the occasion of his 77th birthday and published as part of the Imamura Festschrift Issue.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Shimazaki, T., Suzuki, T. & Kubo, M. Density functional theory study on quasi-three-dimensional oxidized platinum surface: phase transition between α-PtO2-like and β-PtO2-like structures. Theor Chem Acc 130, 1031–1038 (2011). https://doi.org/10.1007/s00214-011-1012-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00214-011-1012-y

Keywords

Navigation