Skip to main content
Log in

Electronic structures and nonlinear optical properties of supramolecular associations of benzo-2,1,3-chalcogendiazoles by the elongation method

  • Regular Article
  • Published:
Theoretical Chemistry Accounts Aims and scope Submit manuscript

Abstract

The investigations of one-dimensional periodic associations of benzo-2,1,3-chalcogendiazoles have been carried out by the elongation method. S, Se and Te chalcogens have been in use. For the polymers, band structures and local densities of states were extracted from ab initio calculations of electronic structure of the 15 units’ oligomers. Static electric (hyper)polarizabilities were studied by the elongation finite-field method.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

References

  1. Lehn JM (1992) In: Williams AF, Floriani C, Merbach AE (eds) Perspectives in coordination chemistry. Helvetica Chimica Acta, Basel/VCH, Weinheim, p 447

  2. Lehn JM (1993) Supramolecular chemistry. Science 260(5115):1762–1763

    Article  CAS  Google Scholar 

  3. van Oss CJ, Good RJ, Chaudhury MK (1986) J Chromatogr A 316:111

    Google Scholar 

  4. Frank H. Herbstein (2005) Crystalline molecular complexes and compounds structures and principles, vols 1, 2, p 1273. Oxford University Press, New York. ISBN 0198568940, 9780198568940

  5. Alcock NW (1972) Adv Inorg Chem Radiochem 15:1

    Article  CAS  Google Scholar 

  6. Vargas-Baca I, Chivers T (2000) Phosphorus Sulfur Silicon Relat Elem 164:207. doi:10.1080/10426500008045247

    Article  CAS  Google Scholar 

  7. Cozzolino AF, Vargas-Baca I, Mansour S, Mahmoudkhani AH (2005) J Am Chem Soc 127:3184. doi:10.1021/ja044005y

    Article  CAS  Google Scholar 

  8. Cozzolino A, Britten JF, Vargas-Baca I (2006) Cryst Growth Des 6:181. doi:10.1021/cg050260y

    Article  CAS  Google Scholar 

  9. Cozzolino AF, Vargas-Baca I (2007) J Organomet Chem 692:2654. doi:10.1016/j.jorganchem.2007.02.033

    Article  CAS  Google Scholar 

  10. Jacquemin D, André JM, Champagne B (1999) J Chem Phys 111:5306. doi:10.1063/1.479790

    Article  CAS  Google Scholar 

  11. Jacquemin D, Champagne B (2000) Int J Quantum Chem 80:863. doi:10.1002/1097-461X(2000)80:4/5<863::AID-QUA36>3.0.CO;2-6

    Article  CAS  Google Scholar 

  12. Löwdin PO (1956) Adv Phys 5:1. doi:10.1080/00018735600101155

    Article  Google Scholar 

  13. Karpfen A (1979) J Phys Chem 12:3227

    CAS  Google Scholar 

  14. Champagne B, Fripiat JG, Mosley DH, André JM (1995) Int J Quantum Chem 56(S29):429

    Article  Google Scholar 

  15. Springborg M, Kirtman B (2008) Phys Rev B 77:045102. doi:10.1103/PhysRevB.77.045102

    Article  CAS  Google Scholar 

  16. Springborg M, Kirtman B (2009) Can J Chem (in press)

  17. Ceresoli D, Thonhauser T, Vanderbilt D, Resta R (2006) Phys Rev B 74:024408. doi:10.1103/PhysRevB.74.024408

    Article  CAS  Google Scholar 

  18. Thonhauser T, Ceresoli D, Vanderbilt D, Resta R (2005) Phys Rev Lett 95:137205. doi:10.1103/PhysRevLett.95.137205

    Article  CAS  Google Scholar 

  19. Pomogaeva A, Kirtman B, Gu FL, Aoki Y (2008) J Chem Phys 128:074109. doi:10.1063/1.2840354

    Article  CAS  Google Scholar 

  20. Imamura A, Aoki Y, Maekawa K (1991) J Chem Phys 95:5419. doi:10.1063/1.461658

    Article  CAS  Google Scholar 

  21. Gu FL, Aoki Y, Korchowiec JA, Imamura, B. Kirtman (2004) J Chem Phys 121:10385, Japan Patent No.4221351 (21 November 2008)

  22. Gu FL, Imamura A, Aoki Y (2006) Elongation method for polymers and its application to nonlinear optics. In: Maroulisin G (ed) Atoms, molecules and clusters in electric fields: theoretical approaches to the calculation of electric polarizabilities, vol 1, pp 97–177. Imperial College Press, London

  23. McBranch DW (1998) Curr Opin Solid State Mater Sci 3:203. doi:10.1016/S1359-0286(98)80090-9

    Article  CAS  Google Scholar 

  24. Srivastava PC (2005) Phosphorus Sulfur Silicon 180:969. doi:10.1080/10426500590905842

    Article  CAS  Google Scholar 

  25. Sekino H, Maeda Y, Kamiya M, Hirao K (2007) J Chem Phys 126:014107. doi:10.1063/1.2428291

    Article  CAS  Google Scholar 

  26. Song JW, Watson MA, Sekino H, Hirao K (2008) J Chem Phys 129:024117. doi:10.1063/1.2936830

    Article  CAS  Google Scholar 

  27. Champagne B, Bulat FA, Yang W, Bonness S, Kirtman B (2006) J Chem Phys 125:194114. doi:10.1063/1.2388262

    Article  CAS  Google Scholar 

  28. Kirtman B, Bonness S, Ramirez-Solis A, Champagne B, Matsumoto H, Sekino H (2008) J Chem Phys 128:114108. doi:10.1063/1.2885051

    Article  CAS  Google Scholar 

  29. Gu FL, Aoki Y, Imamura I, Bishop DM, Kirtman B (2003) Mol Phys 101:1487. doi:10.1080/0026897031000085056

    Article  CAS  Google Scholar 

  30. Schmidt MW, Baldridge KK, Boatz JA, Elbert ST, Gordon MS, Jensen JH, Koseki S, Matsunaga N, Nguyen KA, Su SJ, Windus TL, together with Dupuis M, Montgomery JA (1993) J Comput Chem 14:1347 ((GAMESS/Version 14, Jan. 2003 (R2) from Iowa State University). doi:10.1002/jcc.540141112

    Google Scholar 

  31. Dolg M (2000) Effective core potential. In: Grotendorst J (ed) Modern methods and algorithms of quantum chemistry, procceedings, 2nd edn, vol 3. John von Neumann Institute for Computing, Jülich, pp 504–507

  32. Stevens WJ, Basch H, Krauss M (1984) J Chem Phys 81:6026. doi:10.1063/1.447604

    Article  Google Scholar 

  33. Stevens WJ, Krauss M, Basch H, Jasien PG (1992) Can J Chem 70:612. doi:10.1139/v92-085

    Article  CAS  Google Scholar 

  34. Labello NP, Ferreira AM, Kurtz HA (2005) J Comput Chem 26:1464. doi:10.1002/jcc.20282

    Article  CAS  Google Scholar 

  35. Labello NP, Ferreira AM, Kurtz HA (2006) Int J Quantum Chem 106:3140. doi:10.1002/qua.21129

    Article  CAS  Google Scholar 

  36. Stevens WJ, Fink W (1987) Chem Phys Lett 139:15. doi:10.1016/0009-2614(87)80143-4

    Article  CAS  Google Scholar 

  37. Aoki Y, Suhai S, Imamura A (1994) J Chem Phys 101:10808. doi:10.1063/1.468479

    Article  CAS  Google Scholar 

  38. Aoki Y, Gu FL, Orimoto Y, Suhai S, Imamura A (2007) Elongation method applied to aperiodic systems—random polypeptides, high spin alignment, polymer in solvent, and DNA. Comput Methods Sci Eng Theory Comput Old Probl New Challenge 963(1):120–137 (Lectures presented at the ICCMSE 2007)

  39. Pomogaeva A, Springborg M, Kirtman B, Gu FL, Aoki Y (2009) J Chem Phys (in press)

  40. Hertwig RH, Koch W (1997) Chem Phys Lett 268:345. doi:10.1016/S0009-2614(97)00207-8

    Article  CAS  Google Scholar 

  41. Levenson MD, Bloembergen N (1974) J Chem Phys 60:1323. doi:10.1063/1.1681198

    Article  CAS  Google Scholar 

  42. Messier J, Prasad P, Kajzar F, Ulrich D (1988) Optical effects in organic polymers: proceedings the nato advanced research workshop on nonlinear optical effects in organic polymers. Sophia-Antipolis, Nice, pp 19–20

  43. Kirtman B, Gu FL, Bishop DM (2000) J Chem Phys 113:1294. doi:10.1063/1.481907

    Article  CAS  Google Scholar 

  44. Bishop DM, Gu FL, Kirtman B (2001) J Chem Phys 114:7633. doi:10.1063/1.1356019

    Article  CAS  Google Scholar 

  45. Champagne B, Kirtman B (2000) In: Nalwa HS (ed) Handbook of advanced electronic and photonic materials, vol 9. Academic Press, San Diego, p 63

  46. Bishop DM, Gu FL (2000) Chem Phys Lett 317:322

    Article  CAS  Google Scholar 

  47. Ohnishi S, Gu FL, Naka K, Imamura A, Kirtman B, Aoki Y (2004) J Phys Chem A 108:8478. doi:10.1021/jp047935c

    Article  CAS  Google Scholar 

  48. Gu FL, Champagne B, Aoki Y (2004) Lect Ser Comput Comput Sci Eng 1:779

    CAS  Google Scholar 

  49. Gu FL, Kirtman B, Aoki Y (2005) Lect Ser Comput Comput Sci Eng 4:639–702

    Google Scholar 

  50. Gu FL, Guillaume M, Botek E, Champagne B, Castet F, Ducasse L, Aoki Y (2006) J Comput Methods Sci Eng 6:171

    CAS  Google Scholar 

  51. Champagne B, Perpète EA, van Gisbergen SJA, Baerends EJ, Snijders JG, Soubra-Ghaoui C, Robins KA, Kirtman B (1998) J Chem Phys 109:10489. doi:10.1063/1.477731

    Article  CAS  Google Scholar 

Download references

Acknowledgments

This work was supported by the Grant-in-Aid for Scientific Research from the Ministry of Education, Culture, Sports, Science and Technology (MEXT) of Japan (No. 19350012). This research was also partially supported by the Asahi Glass Foundation.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Feng Long Gu or Yuriko Aoki.

Additional information

Dedicated to Professor Sandor Suhai on the occasion of his 65th birthday and published as part of the Suhai Festschrift Issue.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Pomogaeva, A., Gu, F.L., Imamura, A. et al. Electronic structures and nonlinear optical properties of supramolecular associations of benzo-2,1,3-chalcogendiazoles by the elongation method. Theor Chem Acc 125, 453–460 (2010). https://doi.org/10.1007/s00214-009-0576-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00214-009-0576-2

Keywords

Navigation