Skip to main content
Log in

The application of quantum chemistry and condensed matter theory in studying amino-acids, protein folding and anticancer drug technology

  • Regular Article
  • Published:
Theoretical Chemistry Accounts Aims and scope Submit manuscript

Abstract

The adaptation of methods from quantum chemistry and condensed matter theory for studying biological molecules has proved fruitful in developing our understanding of the electronic and conformational structure and thereby the functionality of amino-acids and proteins. Professor Suhai has been at the forefront of these developments and has made contributions in many areas of this vast field of research. In this article, we focus on three such areas, namely, (1) amino acids, (2) bacteriorhodopsin and (3) anti-cancer drugs involving especially Ru and Rh. We show how advances in density functional theory (DFT) have been used to calculate the electronic structure and density in amino-acids so that they can be compared with X-ray diffraction studies. We also demonstrate how ideas from the theory of phase transitions in condensed matter may be applied for studying phase transitions in bacteriorhodopsin, DNA and proteins. Finally, we highlight some of the recent work done in bringing DFT together with quantum chemistry modelling in studying metallopharmaceutical complexes and conformations of peptides.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  1. Serdyuk IN, Zaccai NR, Zaccai J (2007) Methods in molecular biophysics, Cambridge

  2. March NH, Knapp-Mohammady M, Van Alsenoy C, Suhai S (2008) Phys Chem Liquids 46:242–254

    Article  CAS  Google Scholar 

  3. Löwdiin PO (1955) Phys Rev 97:1490–1508

    Article  Google Scholar 

  4. Möller C, Plesset MS (1934) Phys Rev 46:618–622

    Article  Google Scholar 

  5. Dirac PAM (1930) Proc Camb Phil Soc 26:376–386

    Article  CAS  Google Scholar 

  6. Slater JC (1951) Phys Rev 81:385–390

    Article  CAS  Google Scholar 

  7. Kleinman L (1994) Phys Rev B49:14197–14201

    Google Scholar 

  8. Holas A, March NH (1997) Phys Rev B55:1295–1298

    Google Scholar 

  9. March NH (1987) Phys Rev A36:5077–5078

    Google Scholar 

  10. Della Sala, Görling A (2001) J Chem Phys 115:5718–5732

  11. Howard IA, March NH (2003) J Chem Phys 119:5789–5794

    Article  CAS  Google Scholar 

  12. Howard IA, March NH (2005) Mol Phys 103:1261–1270

    Article  CAS  Google Scholar 

  13. March NH, Nagy Á (2006) Phys Lett A348:374–378

    Google Scholar 

  14. March NH, Suhai S (2007) Phys Lett A360:665–668

    Google Scholar 

  15. Howard ST, Huke JP, Mallinson PR, Frampton CS (1994) Phys Rev B49:7124–7136

    Google Scholar 

  16. Holas A, March NH (1997) Phys Rev B55:9422–9431

    Google Scholar 

  17. Parr RG, Yang W (1989) Density-functional theory of atoms and molecules. OUP, New York

    Google Scholar 

  18. Howard IA, Klein DJ, March NH, Van Alsenoy C, Suhai S, Janosvalfi Z, Nagy A (2003) J Phys Chem B108:14870–14875

    Google Scholar 

  19. Sakurai M, Sakata K, Saito S, Nakajima S, Inoue Y (2003) J Am Chem Soc 125:3108–3112

    Article  CAS  Google Scholar 

  20. March NH, Suhai S, Matthai CC (2007) Phys Chem Liq 45:695–699

    CAS  Google Scholar 

  21. March NH (2006) Phys Chem Liq 44:477–497

    Article  CAS  Google Scholar 

  22. Heyes CD, El-Sayed MA (2001) Biochemistry 40:11819–11827

    Article  CAS  Google Scholar 

  23. Broulette CG, Muccio DD, Finney TK (1987) Biochemistry 26:7431–7438

    Article  Google Scholar 

  24. Cladera J, Galisteo ML, Dunach M, Mateo PL, Padros E (1988) Biochim Biophys Acta 943:148–156

    Article  CAS  Google Scholar 

  25. Taneva SG, Caaviero JMM, Muga A, Goni FM (1995) FEBS Lett 367:297–300

    Article  CAS  Google Scholar 

  26. Jackson MB, Sturtevant JM (1978) Biochemistry 17:911–915

    Article  CAS  Google Scholar 

  27. Lennard-Jones JE, Devonshire AF (1939) Proc Roy Soc London A169:317–338

    Google Scholar 

  28. Pople JA, Karasz FE (1961) Phys Chem Solids 18:28–39

    Article  CAS  Google Scholar 

  29. Tozzini V, March NH, Tosi MP (1999) Phys Chem Liq 37:185–191

    Article  CAS  Google Scholar 

  30. Ubbelohde AR (1965) Melting and crystal structure. OUP, New York

  31. Hillen W, Goodman TC, Wells RD (1981) Nucl Acids Res 9:415–436

    Article  CAS  Google Scholar 

  32. Fersht A (1999) Structure and mechanism in protein science. W.H. Freeman, San Francisco

  33. Ramanathan S, Shakhnovich E (1994) Phys Rev E 50:1303–1316

    Article  CAS  Google Scholar 

  34. Sfatos CD, Gutin AM, Shakhnovich EI (1994) Phys Rev E 50:2898–2905

    Article  CAS  Google Scholar 

  35. Stillinger FH, Head-Gordon T (1995) Phys Rev E 52:2872–2877

    Article  CAS  Google Scholar 

  36. Yue K, Dill KA (1993) Phys Rev E 48:2267–2278

    Article  CAS  Google Scholar 

  37. Doniach S, Garel T, Orland H (1996) J Chem Phys 105:1601–1608

    Article  CAS  Google Scholar 

  38. Doye JPK, Sear RP, Frenkel D (1998) J Chem Phys 108:2134–2142

    Article  CAS  Google Scholar 

  39. Bastolla U, Grassberger P (1997) J Stat Phys 89:1061–1078

    Article  Google Scholar 

  40. Noguchi H, Yoshikawa K (1998) J Chem Phys 109:5070–5077

    Article  CAS  Google Scholar 

  41. Noguchi H, Yoshikawa K (1997) Chem Phys Lett 278:184–188

    Article  CAS  Google Scholar 

  42. Ivanov VA, Paul W, Binder K (1998) J Chem Phys 109:5659–5669

    Article  CAS  Google Scholar 

  43. Lai PY (1998) Phys Rev E 58:6222–6228

    Article  CAS  Google Scholar 

  44. Bustamante C, Marko JF, Siggia ED, Smith S (1994) Science 265:1599–1600

    Article  CAS  Google Scholar 

  45. Maurice RG, Matthai CC (1999) Phys Rev E 60:3165–3169

    Article  CAS  Google Scholar 

  46. Jalkanen KJ, Suhai S (1996) Chem Phys 208:81–116

    Article  CAS  Google Scholar 

  47. Han WG, Jalkanen KJ, Elstner M, Suhai S (1998) J Phys Chem B 102:2587–2602

    Article  CAS  Google Scholar 

  48. Jalkanen KJ, Degtyarenko IM, Nieminen RN, Cao X, Nafie LA, Zhu F, Barro LD (2008) Theor Chem Acc 119:191–210

    Article  CAS  Google Scholar 

  49. Mukhopadhyay P, Zuber G, Beratan DN (2008) Biophys J 95:5574–5586

    Article  CAS  Google Scholar 

  50. Peyrard M, Bishop AR (1989) Phys Rev Lett 62:2755–2758

    Article  CAS  Google Scholar 

  51. Freifelder D (1987) Molecular biology, Jones and Bartlett, Boston

  52. Englander SW, Mayne L, Krishna MMG (2008) Q Rev Biophys 40:287–326

    Google Scholar 

  53. Englander SW, Kallenbach NR (1963) Q Rev Biophys 16:521–655

    Article  Google Scholar 

  54. Yomosa A (1983) Phys Rev A 27:2120–2125

    Article  CAS  Google Scholar 

  55. Yomosa A (1984) Phys Rev A 30:474–480

    Article  CAS  Google Scholar 

  56. Shklovskii BI (1999) Phys Rev Lett 82:3268–3271

    Article  CAS  Google Scholar 

  57. Jalkanen KJ, Jürgensen VW, Claussen A, Rahim A, Jensen GM, Wade RC, Nardi F, Jung C, Degtyarenko IM, Nieminen RM, Herrmann F, Knapp-Mohammady M, Niehaus TA, Frimand K, Suhai S (2006) Int J Quantum Chem 106:1160–1198

    Article  CAS  Google Scholar 

  58. March NH, Knapp-Mohammady M, Suhai S (2008) Phys Lett A 372:1881–1884

    Article  CAS  Google Scholar 

  59. Sigel A, Sigel H (eds) (2004) Metal ions in biological systems, vol 42. Dekker, New York

  60. Sigel RK (2007) Angew Chem Int Ed 46:654–656

    Article  CAS  Google Scholar 

  61. Deubel DV, Chifotides HT (2007) Chem Comm 33:3438–3440

    Article  CAS  Google Scholar 

  62. Xia Y (2008) Rev Nat Mater 7:758–760

    Article  CAS  Google Scholar 

Download references

Acknowledgments

One of us (NHM) acknowledges partial financial support from the University of Antwerp through BOF-NOI.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Clarence C. Matthai.

Additional information

Dedicated to Professor Sandor Suhai on the occasion of his 65th birthday and published as part of the Suhai Festschrift Issue.

Rights and permissions

Reprints and permissions

About this article

Cite this article

March, N.H., Matthai, C.C. The application of quantum chemistry and condensed matter theory in studying amino-acids, protein folding and anticancer drug technology. Theor Chem Acc 125, 193–201 (2010). https://doi.org/10.1007/s00214-009-0558-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00214-009-0558-4

Keywords

Navigation