Skip to main content
Log in

Magnetic properties of intrinsic vacancies on the GaN\((10\bar 10)\) surface: a density-functional-theory study

  • Published:
Journal of the Korean Physical Society Aims and scope Submit manuscript

Abstract

We report density functional theory calculations on the vacancy-induced magnetic properties of the wurzite GaN\((10\bar 10)\) surface. Among various intrinsic vacancies on the surface, we focus on the monatomic Ga and N vacancies. We have found two stable geometries of a surface Ga vacancy and one stable geometry of a surface N vacancy. Two stable surface Ga vacancy structures are shown to have magnetic moments of 3 μ B , which is the same as for the bulk Ga vacancy. Differently from the bulk N vacancy carrying null magnetic moment, the monatomic surface N vacancy has a finite magnetic moment of 1 μ B . These results support the experimental claim that the roomtemperature ferromagnetism observed in inorganic nanoparticles is due to surface vacancies and their complexes. We also present simulated scanning tunneling microscope images for comparison with those obtained in future experimental studies.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. H. Ohno, Science 281, 951 (1998).

    Article  ADS  Google Scholar 

  2. S. Dhar, O. Brandt, M. Ramsteiner, V. F. Sapega and K. H. Ploog, Phys. Rev. Lett. 94, 037205 (2005).

    Article  ADS  Google Scholar 

  3. Y. Gohda and A. Oshiyama, Phys. Rev. B 78, 161201 (2008).

    Article  ADS  Google Scholar 

  4. T. Dietl, H. Ohno, F. Matsukura, J. Cibert and D. Ferrand, Science 287, 1019 (2000).

    Article  ADS  Google Scholar 

  5. A. Sundaresan, R. Bhargavi, N. Rangarajan, U. Siddesh and C. N. R. Rao, Phys. Rev. B 74, 161306(R) (2006).

    Article  ADS  Google Scholar 

  6. A. Sundaresan and C. N. R. Rao, Nano Today 4, 96 (2009).

    Article  Google Scholar 

  7. M. Venkatesan, C. B. Fitzgerald and J. M. D. Coey, Nature (London) 430, 630 (2004).

    Article  ADS  Google Scholar 

  8. N. H. Hong, J. Sakai, N. Poirot and V. Brizé, Phys. Rev. B 73, 132404 (2006).

    Article  ADS  Google Scholar 

  9. P. Dev, Y. Xue and P. Zhang, Phys. Rev. Lett. 100, 117204 (2008).

    Article  ADS  Google Scholar 

  10. P. Mahadevan and S. Mahalakshmi, Phys. Rev. B 73, 153201 (2006).

    Article  ADS  Google Scholar 

  11. P. Larson and S. Satpathy, Phys. Rev. B 76, 245205 (2007).

    Article  ADS  Google Scholar 

  12. J. Hong, J. Appl. Phys. 103, 063907 (2008).

    Article  ADS  Google Scholar 

  13. Z. Xiong, L. Luo, J. Peng and G. Liu, J. Phys. Chem. Solids 70, 1223 (2009).

    Article  ADS  Google Scholar 

  14. J. Nisar, X. Peng, T. W. Kang and R. Ahuga, Europhys. Lett. 93, 57006 (2011).

    Article  ADS  Google Scholar 

  15. C. Madhu, A. Sundaresan and C. N. R. Rao, Phys. Rev. B 77, 201306 (2008).

    Article  ADS  Google Scholar 

  16. Q. Wang, Q. Sun, G. Chen, Y. Kawazoe and P. Jena, Phys. Rev. B 77, 205411 (2008).

    Article  ADS  Google Scholar 

  17. A. L. Schoenhalz, J. T. Arantes, A. Fazzio and G. M. Dalpian, Appl. Phys. Lett. 94, 162503 (2009).

    Article  ADS  Google Scholar 

  18. K. Chae, Y.-C. Chung and H. Kim, Jpn. J. Appl. Phys. 50, 01BE05 (2011).

    Article  Google Scholar 

  19. K. Chae and H. Kim, J. Korean Phys. Soc. 62, 508 (2013).

    Article  ADS  Google Scholar 

  20. H. Jin, Y. Dai, B. B. Huang and M.-H. Whangbo, Appl. Phys. Lett. 94, 162505 (2009).

    Article  ADS  Google Scholar 

  21. J. E. Northrup and J. Neugebauer, Phys. Rev. B 53, R10477 (1996).

    Article  ADS  Google Scholar 

  22. G. Kresse and J. Furthmüller, Phys. Rev. B 54, 11169 (1996).

    Article  ADS  Google Scholar 

  23. H. J. Monkhorst and J. D. Pack, Phys. Rev. B 13, 5188 (1976).

    Article  ADS  MathSciNet  Google Scholar 

  24. P. E. Blöchl, Phys. Rev. B 50, 17953 (1994).

    Article  ADS  Google Scholar 

  25. J. P. Perdew and Y. Wang, Phys. Rev B 45, 13244 (1992).

    Article  ADS  Google Scholar 

  26. V. I. Anisimov, J. Zaanen and O. K. Andersen, Phys. Rev. B 44, 943 (1991).

    Article  ADS  Google Scholar 

  27. A. I. Liechtenstein, V. I. Anisimov and J. Zaanen, Phys. Rev. B 52, R5467 (1995).

    Article  ADS  Google Scholar 

  28. M. Leszczynski et al., Appl. Phys. Lett. 69, 73 (1996).

    Article  ADS  Google Scholar 

  29. R. Dingle, D. D. Sell, S. E. Stokowski and M. Ilegems, Phys. Rev. B 4, 1211 (1971).

    Article  ADS  Google Scholar 

  30. J. Tersoff and D. R. Hamann, Phys. Rev. Lett. 50, 1998 (1983).

    Article  ADS  Google Scholar 

  31. J. E. Northrup and J. Neugebauer, Phys. Rev. B 53, R10477 (1996).

    Article  ADS  Google Scholar 

  32. C. Noguez, Phys. Rev. B 62, 2681 (2000).

    Article  ADS  Google Scholar 

  33. M. Bertelli et al., Phys. Rev. B 80, 115324 (2009).

    Article  ADS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Hanchul Kim.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Hyun, JM., Kim, H. Magnetic properties of intrinsic vacancies on the GaN\((10\bar 10)\) surface: a density-functional-theory study. Journal of the Korean Physical Society 68, 420–424 (2016). https://doi.org/10.3938/jkps.68.420

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.3938/jkps.68.420

Keywords

Navigation