Skip to main content
Log in

Few-body quantum and many-body classical hyperspherical approaches to reactions and to cluster dynamics

  • Regular Article
  • Published:
Theoretical Chemistry Accounts Aims and scope Submit manuscript

Abstract

The hyperspherical method is a widely used and successful approach for the quantum treatment of elementary chemical processes. It has been mostly applied to three-atomic systems, and current progress is here outlined concerning the basic theoretical framework for the extension to four-body bound state and reactive scattering problems. Although most applications only exploit the advantages of the hyperspherical coordinate systems for the formulation of the few-body problem, the full power of the technique implies representations explicitly involving quantum hyperangular momentum operators as dynamical quantities and hyperspherical harmonics as basis functions. In terms of discrete analogues of these harmonics one has a universal representation for the kinetic energy and a diagonal representation for the potential (hyperquantization algorithm). Very recently, advances have been made on the use of the approach in classical dynamics, provided that a hyperspherical formulation is given based on “classical” definitions of the hyperangular momenta and related quantities. The aim of the present paper is to offer a retrospective and prospective view of the hyperspherical methods both in quantum and classical dynamics. Specifically, regarding the general quantum hyperspherical approaches for three- and four-body systems, we first focus on the basis set issue, and then we present developments on the classical formulation that has led to applications involving the implementations of hyperspherical techniques for classical molecular dynamics simulations of simple nanoaggregates.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Kuppermann A (1996). J Phys Chem 100:2621–2636; 100:11202 (Erratum)

    Google Scholar 

  2. Aquilanti V, Cavalli S, De Fazio D (1998). J Chem Phys 109:3792–3804

    Article  CAS  Google Scholar 

  3. Aquilanti V, Cavalli S, De Fazio D, Volpi A (2001). Int J Quantum Chem 85:368–381

    Article  CAS  Google Scholar 

  4. Wang DS, Kuppermann A (2003). J Phys Chem A 107:7290–7310

    Article  CAS  Google Scholar 

  5. Aquilanti V, Cavalli S (1997). J Chem Soc Faraday Trans 93:801–809

    Article  CAS  Google Scholar 

  6. Kuppermann A (1997). J Phys Chem A 101:6368–6383

    Article  CAS  Google Scholar 

  7. Littlejohn RG, Mitchell KA, Aquilanti V (1999). Phys Chem Chem Phys 1:1259–1264

    Article  CAS  Google Scholar 

  8. Wang DS, Kuppermann A (2001). J Chem Phys 115:9184–9208

    Article  CAS  Google Scholar 

  9. Aquilanti V, Beddoni A, Lombardi A, Littlejohn RG (2002). Int J Quantum Chem 89:277–291

    Article  CAS  Google Scholar 

  10. Aquilanti V, Lombardi A, Littlejohn RG (2004). Theor Chem Acc 111:400–406

    CAS  Google Scholar 

  11. Kuppermann A (2004). J Phys Chem A 108:8894–8904

    Article  CAS  Google Scholar 

  12. Smith FT (1960). Phys Rev 120:1058–1069

    Article  Google Scholar 

  13. Smith FT (1962). J Math Phys 3:735–748

    Article  Google Scholar 

  14. Whitten RC, Smith FT (1968). J Math Phys 9:1103–1113

    Article  Google Scholar 

  15. Aquilanti V, Cavalli S (1986). J Chem Phys 85:1355–1361

    Article  CAS  Google Scholar 

  16. Aquilanti V, Cavalli S, Grossi G (1986). J Chem Phys 85:1362–1375

    Article  CAS  Google Scholar 

  17. Aquilanti V, Tonzani S (2004). J Chem Phys 120:4066–4073

    Article  CAS  Google Scholar 

  18. Ragni M, Bitencourt ACP, Aquilanti V (2007). Prog Theor Chem Phys 16:133–158

    Google Scholar 

  19. Pogrebnya SK, Echave J, Clary DC (1997). J Chem Phys 107:8975–8984

    Article  CAS  Google Scholar 

  20. Skouteris D, Castillo JF, Manolopoulos DE (2000). Comp Phys Commun 133:128–135

    Article  CAS  Google Scholar 

  21. Littlejohn RG, Mitchell KA, Aquilanti V, Cavalli S (1998). Phys Rev A 58:3705–3717

    Article  CAS  Google Scholar 

  22. Littlejohn RG, Mitchell KA, Reinsch M, Aquilanti V, Cavalli S (1998). Phys Rev A 58:3718–3738

    Article  CAS  Google Scholar 

  23. Aquilanti V, Beddoni A, Cavalli S, Lombardi A, Littlejohn RG (2000). Mol Phys 98:1763–1770

    Article  CAS  Google Scholar 

  24. Aquilanti V, Cavalli S, De Fazio D, Volpi A, Aguilar A, Giménez X, Lucas JM (2003). Chem Phys Lett 371:504–509

    Article  CAS  Google Scholar 

  25. Aquilanti V, Cavalli S, Simoni A, Aguilar A, Lucas JM, De Fazio D (2004). J Chem Phys 121:11675–11690

    Article  CAS  Google Scholar 

  26. Aquilanti V, Cavalli S, De Fazio D, Volpi A, Aguilar A, Lucas JM (2005). Chem Phys 308:237–253

    Article  CAS  Google Scholar 

  27. Aquilanti V, Cavalli S, De Fazio D, Simoni A, Tscherbul TV (2005). J Chem Phys 123:054314-15

    Article  CAS  Google Scholar 

  28. Zickendraht W (1969). J Math Phys 10:30–37

    Article  Google Scholar 

  29. Zickendraht W (1971). J Math Phys 12:1663–1674

    Article  Google Scholar 

  30. Kuppermann A (2006). J Phys Chem A 110:809–816

    Article  CAS  Google Scholar 

  31. Aquilanti V, Lombardi A, Yurtsever E (2002). Phys Chem Chem Phys 4:5040–5051

    Article  CAS  Google Scholar 

  32. Horn RA, Johnson CR (1990). Matrix analysis, 2nd edn. Cambridge University Press, Cambridge

    Google Scholar 

  33. Aquilanti V, Lombardi A, Sevryuk MB (2004). J Chem Phys 121:5579–5589

    Article  CAS  Google Scholar 

  34. Sevryuk MB, Lombardi A, Aquilanti V (2005). Phys Rev A 72:033201-28

    Article  CAS  Google Scholar 

  35. Aquilanti V, Lombardi A, Sevryuk MB, Yurtsever E (2004). Phys Rev Lett 93:113402-4

    Article  CAS  Google Scholar 

  36. Aquilanti V, Carmona Novillo E, Garcia E, Lombardi A, Sevryuk MB, Yurtsever E (2006). Comput Mater Sci 35: 187–191

    Article  CAS  Google Scholar 

  37. Lombardi A, Aquilanti V, Yurtsever E, Sevryuk MB (2006). Chem Phys Lett 430:424–428

    Article  CAS  Google Scholar 

  38. Calvo F, Gadéa FX, Lombardi A, Aquilanti V (2006). J Chem Phys 125:114307–114313

    Article  CAS  Google Scholar 

  39. Grossi G, Peroncelli L, Rahman N (1999). Chem Phys Lett 313:639–646

    Article  CAS  Google Scholar 

  40. Capecchi G, De Fazio D, Grossi G, Peroncelli L, Rahman N (2001). Mol Phys 99:443–453

    Article  CAS  Google Scholar 

  41. Peroncelli L, Grossi G, Aquilanti V (2004). Mol Phys 102:2345–2359

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to A. Lombardi.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Lombardi, A., Palazzetti, F., Peroncelli, L. et al. Few-body quantum and many-body classical hyperspherical approaches to reactions and to cluster dynamics. Theor Chem Account 117, 709–721 (2007). https://doi.org/10.1007/s00214-006-0195-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00214-006-0195-0

Keywords

Navigation