Skip to main content
Log in

Basis set effects on relative energies and HOMO–LUMO energy gaps of fullerene C36

  • Published:
Theoretical Chemistry Accounts Aims and scope Submit manuscript

Abstract.

Fifteen C36 isomers were examined to determine the influence that the quality of basis sets has on the geometry parameters, the relative stability and HOMO–LUMO energy gaps of fullerene isomers calculated with density functional theory. It is worthwhile to note that the geometry parameters of all C36 isomers are insensitive to basis sets. On the other hand, one set of d-type polarization functions plays an important role in evaluating relative stability and HOMO–LUMO energy gaps, while diffuse functions are not effective. To obtain reliable energies, at least a double-zeta plus polarization basis set is required, and a triple-zeta plus polarization basis set is suggested to lead to accurate energies at a reasonable computational cost.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Kroto HW, Heath JR, O’Brien SC, Curl RF, Smalley RE (1985) Nature 318:162

    Google Scholar 

  2. Krätschmer W, Lamb LD, Fostiropoulos K, Huffman DR (1990) Nature 347:354

    Google Scholar 

  3. Diederich F, Whetten RL, Thilgen C, Ettl R, Chao I, Alvarez MM (1991) Science 254:1768

    Google Scholar 

  4. Diederich F, Ettl R, Rubin Y, Whetten RL, Beck R, Alvarez M, Anz S, Sensharma D, Wudl F, Khemani KC, Koch A (1991) Science 252:548

    Google Scholar 

  5. Kikuchi K, Nakahara N, Wakabayashi T, Suzuki S, Shiromaru H, Miyake Y, Saito K, Ikemoto I, Kainosho M, Achiba Y (1992) Nature 357:142

    Google Scholar 

  6. Hennrich FH, Michel RH, Fischer A, Richard-Schneider S, Gilb S, Kappes MM, Fuchs D, Bürk M, Kobayashi K, Nasage S (1996) Angew Chem Int Ed 35:1732

    Google Scholar 

  7. Thilgen C, Herrmann A, Diederich F (1997) Angew Chem Int Ed 36:2268

    Google Scholar 

  8. Balch AL, Olmstead MM (1998) Chem Rev 98:2123

  9. Guo T, Diener MD, Chai Y, Alford MJ, Haufler RE, McCluree SM, Ohno T, Weaver JH, Scuseria GE, Smalley RE (1992) Science 257:1661

    Google Scholar 

  10. Piskoti C, Yarger J, Zettl A (1998) Nature 393:771

    Google Scholar 

  11. Koshio A, Inakuma M, Sugai T, Shinohara H (2000) J Am Chem Soc 122:398

    Google Scholar 

  12. Sun G, Kertesz M (2000) J Phys Chem A 104:7398

    Google Scholar 

  13. Azamar-Barrios JA, John T, Dennis S, Sadhukan S, Shinohara H, Scuseria GE, Pénicaud A (2001) J Phys Chem A 105:4627

    Google Scholar 

  14. Burda C, Samia ACS, Hathcock DJ, Huang H, Yang S (2002) J Am Chem Soc 124:12400

    Google Scholar 

  15. Nishikawa T, Kinoshita T, Nanbu S, Aoyagi M (1999) J Mol Struct(Theochem) 461:453

    Google Scholar 

  16. Crassous J, Rivera J, Fender NS, Shu L, Echegoyen L, Thilgen C, Herrmann A, Diederich F (1999) Angew Chem Int Ed 38:1613

    Google Scholar 

  17. Heine T, Zerbetto F, Seifert G Fowler PW (2000) J Phys Chem A 104:3865

    Google Scholar 

  18. Sun G, Kertesz M (2001) J Phys Chem A 105:5468

    Google Scholar 

  19. Slanina Z, Zhao X, Uhlík F, Lee S (2003) J Mol Struct(Theochem) 630:205

    Google Scholar 

  20. Sun G (2003) Chem Phys Lett 367:26

    Google Scholar 

  21. Fowler PW, Heine T, Zerbetto F (2000) J Phys Chem A 104:9625

    Google Scholar 

  22. Varganov SA, Avramov PV, Ovchinnikov SG, Gordon MS (2002) Chem Phys Lett 362:380

    Google Scholar 

  23. Slanina Z, Uhlík F, Zhao X, Õsawa E (2000) J Chem Phys 113:4933

    Google Scholar 

  24. Slanina Z, Zhao X, Õsawa E (1998) Chem Phys Lett 290:311

    Google Scholar 

  25. Diener MD, Alford JM (1998) Nature 393:668

    Google Scholar 

  26. Moran D, Stahl F, Bettinger HF, Schaefer III HF, Schleyer PvR (2003) J Am Chem Soc 125:6746

    Google Scholar 

  27. Yang SH, Pettiette CL, Conceicao J, Cheshnovsky O, Smalley RE (1987) Chem Phys Lett 139:233

    Google Scholar 

  28. Handschuh H, Ganteför G, Kessler B, Bechthold PS, Eberhardt W (1995) Phys Rev Lett 74:1095

    Google Scholar 

  29. Becke AD (1988) Phys Rev A 88:3098

    Google Scholar 

  30. Perdew JP, Wang Y (1992) Phys Rev B 45:13244

    Google Scholar 

  31. Hehre WJ, Random L, Schleyer PvR, Pople JA (1986) Ab initio molecular orbital theory. Wiley, New York

  32. Dunning Jr TH (1989) J Chem Phys 90:1007

  33. Gaussian 98, Revision A.6, Frisch MJ, Trucks GW, Schlegel HB, Scuseria GE, Robb MA, Cheeseman JR, Zakrzewski VG, Montgomery JA Jr, Stratmann RE, Burant JC, Dapprich S, Millam JM, Daniels AD, Kudin KN, Strain MC, Farkas O, Tomasi J, Barone V, Cossi M, Cammi R, Mennucci B, Pomelli C, Adamo C, Clifford S, Ochterski J, Petersson GA, Ayala PY, Cui Q, Morokuma K, Malick DK, Rabuck AD, Raghavachari K, Foresman JB, Cioslowski J, Ortiz JV, Stefanov BB, Liu G, Liashenko A, Piskorz P, Komaromi I, Gomperts R, Martin RL, Fox DJ, Keith T, Al-Laham MA, Peng CY, Nanayakkara A, Gonzalez C, Challacombe M, Gill PMW, Johnson B, Chen W, Wong MW, Andres JL, Gonzalez C, Head-Gordon M, Replogle ES, Pople JA (1998) Gaussian, Inc., Pittsburgh

  34. Slanina Z, Zhao X, Lee S-L, Õsawa E (2000) Scripta Mater 43:733

  35. Zhao X, Slanina Z, Goto H (2004) J Phys Chem A 108:4479

    Google Scholar 

  36. Slanina Z, Ishimura K, Kobayashi K, Nagase S (2004) Chem Phys Lett 384:114

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Kyoung Hoon Kim.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Kim, K., Han, YK. & Jung, J. Basis set effects on relative energies and HOMO–LUMO energy gaps of fullerene C36. Theor Chem Acc 113, 233–237 (2005). https://doi.org/10.1007/s00214-005-0630-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00214-005-0630-7

Keywords

Navigation