Skip to main content
Log in

Serotonin 5-HT1B receptor-mediated behavior and binding in mice with the overactive and dysregulated serotonin transporter Ala56 variant

  • Original Investigation
  • Published:
Psychopharmacology Aims and scope Submit manuscript

Abstract

Rationale

Elevated whole-blood serotonin (5-HT) is a robust biomarker in ~ 30% of patients with autism spectrum disorders, in which repetitive behavior is a core symptom. Furthermore, elevated whole-blood 5-HT has also been described in patients with pediatric obsessive-compulsive disorder. The 5-HT1B receptor is associated with repetitive behaviors seen in both disorders. Chronic blockade of serotonin transporter (SERT) reduces 5-HT1B receptor levels in the orbitofrontal cortex (OFC) and attenuates the sensorimotor deficits and hyperactivity seen with the 5-HT1B agonist RU24969. We hypothesized that enhanced SERT function would increase 5-HT1B receptor levels in OFC and enhance sensorimotor deficits and hyperactivity induced by RU24969.

Objectives

We examined the impact of the SERT Ala56 mutation, which leads to enhanced SERT function, on 5-HT1B receptor binding and 5-HT1B-mediated sensorimotor deficits.

Methods

Specific binding to 5-HT1B receptors was measured in OFC and striatum of naïve SERT Ala56 or wild-type mice. The impact of the 5-HT1A/1B receptor agonist RU24969 on prepulse inhibition (PPI) of startle, hyperactivity, and expression of cFos was examined.

Results

While enhanced SERT function increased 5-HT1B receptor levels in OFC of Ala56 mice, RU24969-induced PPI deficits and hyperlocomotion were not different between genotypes. Baseline levels of cFos expression were not different between groups. RU24969 increased cFos expression in OFC of wild-types and decreased cFos in the striatum.

Conclusions

While reducing 5-HT1B receptors may attenuate sensorimotor gating deficits, increased 5-HT1B levels in SERT Ala56 mice do not necessarily exacerbate these deficits, potentially due to compensations during neural circuit development in this model system.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

References

  • Ahmari SE, Risbrough VB, Geyer MA, Simpson HB (2012) Impaired sensorimotor gating in unmedicated adults with obsessive-compulsive disorder. Neuropsychopharmacology 37:1216–1223

    Article  PubMed  PubMed Central  Google Scholar 

  • Ahmari SE, Risbrough VB, Geyer MA, Simpson HB (2016) Prepulse inhibition deficits in obsessive-compulsive disorder are more pronounced in females. Neuropsychopharmacology 41:2963–2964

    Article  PubMed  PubMed Central  Google Scholar 

  • Baldan Ramsey LC, Xu M, Wood N, Pittenger C (2011) Lesions of the dorsomedial striatum disrupt prepulse inhibition. Neuroscience 180:222–228

    Article  CAS  PubMed  Google Scholar 

  • Bejerot S (2007) An autistic dimension: a proposed subtype of obsessive-compulsive disorder. Autism 11:101–110

    Article  PubMed  Google Scholar 

  • Boschert U, Amara DA, Segu L, Hen R (1994) The mouse 5-hydroxytryptamine1B receptor is localized predominantly on axon terminals. Neuroscience 58:167–182

    Article  CAS  PubMed  Google Scholar 

  • Cappi C, Brentani H, Lima L, Sanders SJ, Zai G, Diniz BJ, Reis VN, Hounie AG, Conceicao do Rosario M, Mariani D, Requena GL, Puga R, Souza-Duran FL, Shavitt RG, Pauls DL, Miguel EC, Fernandez TV (2016) Whole-exome sequencing in obsessive-compulsive disorder identifies rare mutations in immunological and neurodevelopmental pathways. Transl Psychiatry 6:e764

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Carneiro AM, Airey DC, Thompson B, Zhu CB, Lu L, Chesler EJ, Erikson KM, Blakely RD (2009) Functional coding variation in recombinant inbred mouse lines reveals multiple serotonin transporter-associated phenotypes. Proc Natl Acad Sci U S A 106:2047–2052

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Dawson N, Ferrington L, Lesch KP, Kelly PA (2011) Cerebral metabolic responses to 5-HT2A/C receptor activation in mice with genetically modified serotonin transporter (SERT) expression. Eur Neuropsychopharmacol 21:117–128

    Article  CAS  PubMed  Google Scholar 

  • Dulawa SC, Geyer MA (1996) Psychopharmacology of prepulse inhibition in mice. Chin J Phys 39:139–146

    CAS  Google Scholar 

  • Dulawa SC, Geyer MA (2000) Effects of strain and serotonergic agents on prepulse inhibition and habituation in mice. Neuropharmacology 39:2170–2179

    Article  CAS  PubMed  Google Scholar 

  • Dulawa SC, Hen R, Scearce-Levie K, Geyer MA (1997) Serotonin1B receptor modulation of startle reactivity, habituation, and prepulse inhibition in wild-type and serotonin1B knockout mice. Psychopharmacology 132:125–134

    Article  CAS  PubMed  Google Scholar 

  • Dulawa SC, Hen R, Scearce-Levie K, Geyer MA (1998) 5-HT1B receptor modulation of prepulse inhibition: recent findings in wild-type and 5-HT1B knockout mice. Ann N Y Acad Sci 861:79–84

    Article  CAS  PubMed  Google Scholar 

  • Dulawa SC, Gross C, Stark KL, Hen R, Geyer MA (2000) Knockout mice reveal opposite roles for serotonin 1A and 1B receptors in prepulse inhibition. Neuropsychopharmacology 22:650–659

    Article  CAS  PubMed  Google Scholar 

  • Feliciano P, Zhou X, Astrovskaya I, Turner TN, Wang T, Brueggeman L, Barnard R, Hsieh A, Snyder LG, Muzny DM, Sabo A, Consortium S, Gibbs RA, Eichler EE, O’Roak BJ, Michaelson JJ, Volfovsky N, Shen Y, Chung WK (2019) Exome sequencing of 457 autism families recruited online provides evidence for autism risk genes. NPJ Genom Med 4:19

    Article  PubMed  PubMed Central  Google Scholar 

  • Frankland PW, Wang Y, Rosner B, Shimizu T, Balleine BW, Dykens EM, Ornitz EM, Silva AJ (2004) Sensorimotor gating abnormalities in young males with fragile X syndrome and Fmr1-knockout mice. Mol Psychiatry 9:417–425

    Article  CAS  PubMed  Google Scholar 

  • Gabriele S, Sacco R, Persico AM (2014) Blood serotonin levels in autism spectrum disorder: a systematic review and meta-analysis. Eur Neuropsychopharmacol 24:919–929

    Article  CAS  PubMed  Google Scholar 

  • Hanna GL, Yuwiler A, Cantwell DP (1991) Whole blood serotonin in juvenile obsessive-compulsive disorder. Biol Psychiatry 29:738–744

    Article  CAS  PubMed  Google Scholar 

  • Hen R (1992) Of mice and flies: commonalities among 5-HT receptors. Trends Pharmacol Sci 13:160–165

    Article  CAS  PubMed  Google Scholar 

  • Ho EV, Thompson SL, Katzka WR, Sharifi MF, Knowles JA, Dulawa SC (2016) Clinically effective OCD treatment prevents 5-HT1B receptor-induced repetitive behavior and striatal activation. Psychopharmacology 233:57–70

    Article  CAS  PubMed  Google Scholar 

  • Hoenig K, Hochrein A, Quednow BB, Maier W, Wagner M (2005) Impaired prepulse inhibition of acoustic startle in obsessive-compulsive disorder. Biol Psychiatry 57:1153–1158

    Article  PubMed  Google Scholar 

  • Hollander E, Pallanti S (2002) Current and experimental therapeutics of OCD. In: Davis K, Charney D, Coyle J, Nemeroff C (eds) Neuropsychopharmacology: the fifth generation of progress. Lippincott Williams & Wilkins, Philadelphia, pp 1648–1655

    Google Scholar 

  • Hollander E, Novotny S, Allen A, Aronowitz B, Cartwright C, DeCaria C (2000) The relationship between repetitive behaviors and growth hormone response to sumatriptan challenge in adult autistic disorder. Neuropsychopharmacology 22:163–167

    Article  CAS  PubMed  Google Scholar 

  • International Molecular Genetic Study of Autism Consortium (1998) A full genome screen for autism with evidence for linkage to a region on chromosome 7q. Hum Mol Genet 7:571–578

    Article  CAS  Google Scholar 

  • Jennings KA, Loder MK, Sheward WJ, Pei Q, Deacon RM, Benson MA, Olverman HJ, Hastie ND, Harmar AJ, Shen S, Sharp T (2006) Increased expression of the 5-HT transporter confers a low-anxiety phenotype linked to decreased 5-HT transmission. J Neurosci 26:8955–8964

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Jennings KA, Sheward WJ, Harmar AJ, Sharp T (2008) Evidence that genetic variation in 5-HT transporter expression is linked to changes in 5-HT2A receptor function. Neuropharmacology 54:776–783

    Article  CAS  PubMed  Google Scholar 

  • Kohl S, Heekeren K, Klosterkotter J, Kuhn J (2013) Prepulse inhibition in psychiatric disorders--apart from schizophrenia. J Psychiatr Res 47:445–452

    Article  CAS  PubMed  Google Scholar 

  • Leyfer OT, Folstein SE, Bacalman S, Davis NO, Dinh E, Morgan J, Tager-Flusberg H, Lainhart JE (2006) Comorbid psychiatric disorders in children with autism: interview development and rates of disorders. J Autism Dev Disord 36:849–861

    Article  PubMed  Google Scholar 

  • McAlonan GM, Daly E, Kumari V, Critchley HD, van Amelsvoort T, Suckling J, Simmons A, Sigmundsson T, Greenwood K, Russell A, Schmitz N, Happe F, Howlin P, Murphy DG (2002) Brain anatomy and sensorimotor gating in Asperger’s syndrome. Brain 125:1594–1606

    Article  PubMed  Google Scholar 

  • Morelli E, Moore H, Rebello TJ, Gray N, Steele K, Esposito E, Gingrich JA, Ansorge MS (2011) Chronic 5-HT transporter blockade reduces DA signaling to elicit basal ganglia dysfunction. J Neurosci 31:15742–15750

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Muller CL, Anacker AMJ, Veenstra-VanderWeele J (2016) The serotonin system in autism spectrum disorder: From biomarker to animal models. Neuroscience 321:24–41

    Article  CAS  PubMed  Google Scholar 

  • Novotny S, Hollander E, Phillips A, Allen A, Wasserman S, Iyengar R (2004) Increased repetitive behaviours and prolactin responsivity to oral m-chlorophenylpiperazine in adults with autism spectrum disorders. Int J Neuropsychopharmacol 7:249–254

    Article  CAS  PubMed  Google Scholar 

  • O’Reilly KC, Perica MI, Fenton AA (2016) Memory deficits with intact cognitive control in the methylazoxymethanol acetate (MAM) exposure model of neurodevelopmental insult. Neurobiol Learn Mem 134 Pt B:294–303

    Article  PubMed  Google Scholar 

  • O’Reilly KC, Anacker AMJ, Rogers TD, Forsberg CG, Wang J, Zhang B, Blakely RD, Veenstra-VanderWeele J (2020) A social encounter drives gene expression changes linked to neuronal function, brain development, and related disorders in mice expressing the serotonin transporter Ala56 variant. Neurosci Lett 730:135027

    Article  PubMed  PubMed Central  Google Scholar 

  • Pazos A, Palacios JM (1985) Quantitative autoradiographic mapping of serotonin receptors in the rat brain. I. Serotonin-1 receptors. Brain Res 346:205–230

    Article  CAS  PubMed  Google Scholar 

  • Pittenger C, Adams TG Jr, Gallezot JD, Crowley MJ, Nabulsi N, James R, Gao H, Kichuk SA, Simpson R, Billingslea E, Hannestad J, Bloch M, Mayes L, Bhagwagar Z, Carson RE (2016) OCD is associated with an altered association between sensorimotor gating and cortical and subcortical 5-HT1b receptor binding. J Affect Disord 196:87–96

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Piven J, Tsai GC, Nehme E, Coyle JT, Chase GA, Folstein SE (1991) Platelet serotonin, a possible marker for familial autism. J Autism Dev Disord 21:51–59

    Article  CAS  PubMed  Google Scholar 

  • Prasad HC, Zhu CB, McCauley JL, Samuvel DJ, Ramamoorthy S, Shelton RC, Hewlett WA, Sutcliffe JS, Blakely RD (2005) Human serotonin transporter variants display altered sensitivity to protein kinase G and p38 mitogen-activated protein kinase. Proc Natl Acad Sci U S A 102:11545–11550

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Prasad HC, Steiner JA, Sutcliffe JS, Blakely RD (2009) Enhanced activity of human serotonin transporter variants associated with autism. Philos Trans R Soc Lond Ser B Biol Sci 364:163–173

    Article  CAS  Google Scholar 

  • Quinlan MA, Krout D, Katamish RM, Robson MJ, Nettesheim C, Gresch PJ, Mash DC, Henry LK, Blakely RD (2019) Human serotonin transporter coding variation establishes conformational bias with functional consequences. ACS Chem Neurosci 10:3249–3260

    Article  CAS  PubMed  Google Scholar 

  • Rodriguez CI, Kegeles LS, Levinson A, Feng T, Marcus SM, Vermes D, Flood P, Simpson HB (2013) Randomized controlled crossover trial of ketamine in obsessive-compulsive disorder: proof-of-concept. Neuropsychopharmacology 38:2475–2483

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Sari Y (2004) Serotonin1B receptors: from protein to physiological function and behavior. Neurosci Biobehav Rev 28:565–582

    Article  CAS  PubMed  Google Scholar 

  • Saxena S, Rauch SL (2000) Functional neuroimaging and the neuroanatomy of obsessive-compulsive disorder. Psychiatr Clin N Am 23:563–586

    Article  CAS  Google Scholar 

  • Shanahan NA, Holick Pierz KA, Masten VL, Waeber C, Ansorge M, Gingrich JA, Geyer MA, Hen R, Dulawa SC (2009) Chronic reductions in serotonin transporter function prevent 5-HT1B-induced behavioral effects in mice. Biol Psychiatry 65:401–408

    Article  CAS  PubMed  Google Scholar 

  • Shanahan NA, Velez LP, Masten VL, Dulawa SC (2011) Essential role for orbitofrontal serotonin 1B receptors in obsessive-compulsive disorder-like behavior and serotonin reuptake inhibitor response in mice. Biol Psychiatry 70:1039–1048

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Sun Q, Li X, Ren M, Zhao M, Zhong Q, Ren Y, Luo P, Ni H, Zhang X, Zhang C, Yuan J, Li A, Luo M, Gong H, Luo Q (2019) A whole-brain map of long-range inputs to GABAergic interneurons in the mouse medial prefrontal cortex. Nat Neurosci 22:1357–1370

    Article  CAS  PubMed  Google Scholar 

  • Sutcliffe JS, Delahanty RJ, Prasad HC, McCauley JL, Han Q, Jiang L, Li C, Folstein SE, Blakely RD (2005) Allelic heterogeneity at the serotonin transporter locus (SLC6A4) confers susceptibility to autism and rigid-compulsive behaviors. Am J Hum Genet 77:265–279

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Swerdlow NR, Geyer MA, Braff DL (2001) Neural circuit regulation of prepulse inhibition of startle in the rat: current knowledge and future challenges. Psychopharmacology 156:194–215

    Article  CAS  PubMed  Google Scholar 

  • Szonyi A, Mayer MI, Cserep C, Takacs VT, Watanabe M, Freund TF, Nyiri G (2016) The ascending median raphe projections are mainly glutamatergic in the mouse forebrain. Brain Struct Funct 221:735–751

    Article  CAS  PubMed  Google Scholar 

  • Thompson SL, Dulawa SC (2019) Dissecting the roles of beta-arrestin2 and GSK-3 signaling in 5-HT1BR-mediated perseverative behavior and prepulse inhibition deficits in mice. PLoS One 14:e0211239

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Thompson SL, Welch AC, Iourinets J, Dulawa SC (2020) Ketamine induces immediate and delayed alterations of OCD-like behavior. Psychopharmacology 237:627–638

    Article  CAS  PubMed  Google Scholar 

  • Veenstra-Vanderweele J, Jessen TN, Thompson BJ, Carter M, Prasad HC, Steiner JA, Sutcliffe JS, Blakely RD (2009) Modeling rare gene variation to gain insight into the oldest biomarker in autism: construction of the serotonin transporter Gly56Ala knock-in mouse. J Neurodev Disord 1:158–171

    Article  PubMed  PubMed Central  Google Scholar 

  • Veenstra-VanderWeele J, Muller CL, Iwamoto H, Sauer JE, Owens WA, Shah CR, Cohen J, Mannangatti P, Jessen T, Thompson BJ, Ye R, Kerr TM, Carneiro AM, Crawley JN, Sanders-Bush E, McMahon DG, Ramamoorthy S, Daws LC, Sutcliffe JS, Blakely RD (2012) Autism gene variant causes hyperserotonemia, serotonin receptor hypersensitivity, social impairment and repetitive behavior. Proc Natl Acad Sci U S A 109:5469–5474

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Wendland JR, DeGuzman TB, McMahon F, Rudnick G, Detera-Wadleigh SD, Murphy DL (2008) SERT Ileu425Val in autism, Asperger syndrome and obsessive-compulsive disorder. Psychiatr Genet 18:31–39

    Article  PubMed  Google Scholar 

  • Wirtshafter D, Cook DF (1998) Serotonin-1B agonists induce compartmentally organized striatal Fos expression in rats. Neuroreport 9:1217–1221

    Article  CAS  PubMed  Google Scholar 

Download references

Funding

This work was supported by National Institutes of Health grants MH094604 (JV), MH081066 (JV), MH114296 (SA, JV), and T32MH016434 (JV/LCS).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jeremy Veenstra-VanderWeele.

Ethics declarations

Conflict of interest

JV has consulted or served on advisory boards for Novartis, Roche Pharmaceuticals, and SynapDx; has received research funding from Novartis, Roche Pharmaceuticals, Forest, Seaside Therapeutics, Janssen, and SynapDx; and has received an editorial stipend from Springer and Wiley. All other authors declare that they have no competing interests.

Additional information

Publisher’s note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary information

Supplemental File 1

Locations of 5-HT1B binding measurements. a) Contours are shown that depict where optical density readings were taken in the orbitofrontal cortex and the striatum. b) and c) Specific binding was calculated as the total binding (left) - the nonspecific binding (right) in b) wild-type and c) Ala56 mice. LO = lateral orbitofrontal cortex. VO = ventral orbitofrontal cortex, MO = medial orbitofrontal cortex, dSTR = dorsal striatum (PNG 1523 kb)

High resolution image (TIF 11169 kb)

Supplemental File 2

Table of statistics for effect of section within each hemisphere, effect of hemisphere, and effect of genotype on 5-HT1B binding for each brain region (DOCX 14 kb)

Supplemental File 3

Two hours following saline or RU24969 injection, brains were collected for cFos immunostaining. RU24969 a) induced cFos expression in the ventral OFC and b) reduced cFos expression in the ventral striatum of wild-type mice (PNG 2259 kb)

High resolution image (TIF 15105 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

O’Reilly, K.C., Connor, M., Pierson, J. et al. Serotonin 5-HT1B receptor-mediated behavior and binding in mice with the overactive and dysregulated serotonin transporter Ala56 variant. Psychopharmacology 238, 1111–1120 (2021). https://doi.org/10.1007/s00213-020-05758-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00213-020-05758-8

Keywords

Navigation