Skip to main content
Log in

The ascending median raphe projections are mainly glutamatergic in the mouse forebrain

  • Original Article
  • Published:
Brain Structure and Function Aims and scope Submit manuscript

Abstract

The median raphe region (MRR) is thought to be serotonergic and plays an important role in the regulation of many cognitive functions. In the hippocampus (HIPP), the MRR exerts a fast excitatory control, partially through glutamatergic transmission, on a subpopulation of GABAergic interneurons that are key regulators of local network activity. However, not all receptors of this connection in the HIPP and in synapses established by MRR in other brain areas are known. Using combined anterograde tracing and immunogold methods, we show that the GluN2A subunit of the NMDA receptor is present in the synapses established by MRR not only in the HIPP, but also in the medial septum (MS) and in the medial prefrontal cortex (mPFC) of the mouse. We estimated similar amounts of NMDA receptors in these synapses established by the MRR and in local adjacent excitatory synapses. Using retrograde tracing and confocal laser scanning microscopy, we found that the majority of the projecting cells of the mouse MRR contain the vesicular glutamate transporter type 3 (vGluT3). Furthermore, using double retrograde tracing, we found that single cells of the MRR can innervate the HIPP and mPFC or the MS and mPFC simultaneously, and these double-projecting cells are also predominantly vGluT3-positive. Our results indicate that the majority of the output of the MRR is glutamatergic and acts through NMDA receptor-containing synapses. This suggests that key forebrain areas receive precisely targeted excitatory input from the MRR, which is able to synchronously modify activity in those regions via individual MRR cells with dual projections.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  • Acsády L, Halasy K, Freund TF (1993) Calretinin is present in non-pyramidal cells of the rat hippocampus–III. Their inputs from the median raphe and medial septal nuclei. Neuroscience 52(4):829–841

    Article  PubMed  Google Scholar 

  • Acsády L, Arabadzisz D, Katona I, Freund TF (1996) Topographic distribution of dorsal and median raphe neurons with hippocampal, septal and dual projection. Acta Biol Hung 47(1–4):9–19

    PubMed  Google Scholar 

  • Amilhon B, Lepicard E, Renoir T, Mongeau R, Popa D, Poirel O, Miot S, Gras C, Gardier AM, Gallego J, Hamon M, Lanfumey L, Gasnier B, Giros B, El Mestikawy S (2010) vGluT3 (vesicular glutamate transporter type 3) contribution to the regulation of serotonergic transmission and anxiety. J Neurosci 30(6):2198–2210. doi:10.1523/JNEUROSCI.5196-09.2010

    Article  CAS  PubMed  Google Scholar 

  • Arens J, Stabel J, Heinemann U (1992) Pharmacological properties of excitatory amino acid induced changes in extracellular calcium concentration in rat hippocampal slices. Can J Physiol Pharmacol 70(Suppl):S194–S205

    Article  CAS  PubMed  Google Scholar 

  • Assaf SY, Miller JJ (1978) The role of a raphe serotonin system in the control of septal unit activity and hippocampal desynchronization. Neuroscience 3(6):539–550

    Article  CAS  PubMed  Google Scholar 

  • Azmitia EC, Segal M (1978) An autoradiographic analysis of the differential ascending projections of the dorsal and median raphe nuclei in the rat. J Comp Neurol 179(3):641–667. doi:10.1002/cne.901790311

    Article  CAS  PubMed  Google Scholar 

  • Aznar S, Qian ZX, Knudsen GM (2004) Non-serotonergic dorsal and median raphe projection onto parvalbumin- and calbindin-containing neurons in hippocampus and septum. Neuroscience 124(3):573–581. doi:10.1016/j.neuroscience.2003.12.020 (pii: S0306452203009333)

    Article  CAS  PubMed  Google Scholar 

  • Bang SJ, Jensen P, Dymecki SM, Commons KG (2012) Projections and interconnections of genetically defined serotonin neurons in mice. Eur J Neurosci 35(1):85–96. doi:10.1111/j.1460-9568.2011.07936.x

    Article  PubMed  PubMed Central  Google Scholar 

  • Chesnoy-Marchais D, Barthe JY (1996) Voltage-dependent block of NMDA responses by 5-HT agonists in ventral spinal cord neurones. Br J Pharmacol 117(1):133–141

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • de Bartolomeis A, Buonaguro EF, Iasevoli F (2013) Serotonin-glutamate and serotonin-dopamine reciprocal interactions as putative molecular targets for novel antipsychotic treatments: from receptor heterodimers to postsynaptic scaffolding and effector proteins. Psychopharmacology 225(1):1–19. doi:10.1007/s00213-012-2921-8

    Article  PubMed  Google Scholar 

  • Dederen PJ, Gribnau AA, Curfs MH (1994) Retrograde neuronal tracing with cholera toxin B subunit: comparison of three different visualization methods. Histochem J 26 (11):856–862

    Article  CAS  PubMed  Google Scholar 

  • Dingledine R, Borges K, Bowie D, Traynelis SF (1999) The glutamate receptor ion channels. Pharmacol Rev 51(1):7–61

    CAS  PubMed  Google Scholar 

  • Freund TF, Antal M (1988) GABA-containing neurons in the septum control inhibitory interneurons in the hippocampus. Nature 336(6195):170–173. doi:10.1038/336170a0

    Article  CAS  PubMed  Google Scholar 

  • Freund TF, Gulyás AI, Acsády L, Görcs T, Tóth K (1990) Serotonergic control of the hippocampus via local inhibitory interneurons. Proc Natl Acad Sci USA 87(21):8501–8505

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Fukaya M, Kato A, Lovett C, Tonegawa S, Watanabe M (2003) Retention of NMDA receptor NR2 subunits in the lumen of endoplasmic reticulum in targeted NR1 knockout mice. Proc Natl Acad Sci USA 100(8):4855–4860. doi:10.1073/pnas.0830996100

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Hamorsky KT, Kouokam JC, Bennett LJ, Baldauf KJ, Kajiura H, Fujiyama K, Matoba N (2013) Rapid and scalable plant-based production of a cholera toxin B subunit variant to aid in mass vaccination against cholera outbreaks. PLoS Negl Trop Dis 7(3):e2046

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Heidbreder CA, Groenewegen HJ (2003) The medial prefrontal cortex in the rat: evidence for a dorso-ventral distinction based upon functional and anatomical characteristics. Neurosci Biobehav Rev 27(6):555–579

    Article  PubMed  Google Scholar 

  • Hensler JG (2006) Serotonergic modulation of the limbic system. Neurosci Biobehav Rev 30(2):203–214. doi:10.1016/j.neubiorev.2005.06.007 (pii: S0149-7634(05)00118-1)

    Article  CAS  PubMed  Google Scholar 

  • Jackson J, Dickson CT, Bland BH (2008) Median raphe stimulation disrupts hippocampal theta via rapid inhibition and state-dependent phase reset of theta-related neural circuitry. J Neurophysiol 99(6):3009–3026. doi:10.1152/jn.00065.2008

    Article  PubMed  Google Scholar 

  • Jackson J, Bland BH, Antle MC (2009) Nonserotonergic projection neurons in the midbrain raphe nuclei contain the vesicular glutamate transporter vGluT3. Synapse 63(1):31–41. doi:10.1002/syn.20581

    Article  CAS  PubMed  Google Scholar 

  • Klausberger T (2009) GABAergic interneurons targeting dendrites of pyramidal cells in the CA1 area of the hippocampus. Eur J Neurosci 30(6):947–957. doi:10.1111/j.1460-9568.2009.06913.x

    Article  PubMed  Google Scholar 

  • Köhler C, Steinbusch H (1982) Identification of serotonin and non-serotonin-containing neurons of the mid-brain raphe projecting to the entorhinal area and the hippocampal formation. A combined immunohistochemical and fluorescent retrograde tracing study in the rat brain. Neuroscience 7(4):951–975

    Article  PubMed  Google Scholar 

  • Köhler C, Chan-Palay V, Steinbusch H (1982) The distribution and origin of serotonin-containing fibers in the septal area: a combined immunohistochemical and fluorescent retrograde tracing study in the rat. J Comp Neurol 209(1):91–111. doi:10.1002/cne.902090109

    Article  PubMed  Google Scholar 

  • Kosofsky BE, Molliver ME (1987) The serotoninergic innervation of cerebral cortex: different classes of axon terminals arise from dorsal to median raphe nuclei. Synapse 1(2):153–168. doi:10.1002/syn.890010204

    Article  CAS  PubMed  Google Scholar 

  • Lanciego JL, Wouterlood FG (2011) A half century of experimental neuroanatomical tracing. J Chem Neuroanat 42(3):157–183. doi:10.1016/j.jchemneu.2011.07.001

    Article  PubMed  Google Scholar 

  • Leranth C, Vertes RP (1999) Median raphe serotonergic innervation of medial septum/diagonal band of broca (MSDB) parvalbumin-containing neurons: possible involvement of the MSDB in the desynchronization of the hippocampal EEG. J Comp Neurol 410(4):586–598. doi:10.1002/(SICI)1096-9861(19990809)410:4<586:AID-CNE6>3.0.CO;2-H

    Article  CAS  PubMed  Google Scholar 

  • Liang X, Arvanov VL, Wang RY (1998) Inhibition of NMDA-receptor mediated response in the rat medial prefrontal cortical pyramidal cells by the 5-HT3 receptor agonist SR 57227A and 5-HT: intracellular studies. Synapse 29(3):257–268. doi:10.1002/(SICI)1098-2396(199807)29:3<257:AID-SYN8>3.0.CO;2-5

    Article  CAS  PubMed  Google Scholar 

  • MacLean JN, Schmidt BJ (2001) Voltage-sensitivity of motoneuron NMDA receptor channels is modulated by serotonin in the neonatal rat spinal cord. J Neurophysiol 86(3):1131–1138

    CAS  PubMed  Google Scholar 

  • Malenka RC, Bear MF (2004) LTP and LTD: an embarrassment of riches. Neuron 44(1):5–21. doi:10.1016/j.neuron.2004.09.012

    Article  CAS  PubMed  Google Scholar 

  • Maura G, Marcoli M, Pepicelli O, Rosu C, Viola C, Raiteri M (2000) Serotonin inhibition of the NMDA receptor/nitric oxide/cyclic GMP pathway in human neocortex slices: involvement of 5-HT(2C) and 5-HT(1A) receptors. Br J Pharmacol 130(8):1853–1858. doi:10.1038/sj.bjp.0703510

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • McKenna JT, Vertes RP (2001) Collateral projections from the median raphe nucleus to the medial septum and hippocampus. Brain Res Bull 54(6):619–630 (pii: S0361923001004658)

    Article  CAS  PubMed  Google Scholar 

  • McMahon LL, Kauer JA (1997) Hippocampal interneurons are excited via serotonin-gated ion channels. J Neurophysiol 78(5):2493–2502

    CAS  PubMed  Google Scholar 

  • Morales M, Bloom FE (1997) The 5-HT3 receptor is present in different subpopulations of GABAergic neurons in the rat telencephalon. J Neurosci 17(9):3157–3167

    CAS  PubMed  Google Scholar 

  • Papp EC, Hajos N, Acsády L, Freund TF (1999) Medial septal and median raphe innervation of vasoactive intestinal polypeptide-containing interneurons in the hippocampus. Neuroscience 90(2):369–382

    Article  CAS  PubMed  Google Scholar 

  • Paxinos G, Franklin KBJ (2012) The mouse brain in stereotaxic coordinates, 4th edn. Academic Press, Waltham

    Google Scholar 

  • Puig MV, Santana N, Celada P, Mengod G, Artigas F (2004) In vivo excitation of GABA interneurons in the medial prefrontal cortex through 5-HT3 receptors. Cereb Cortex 14(12):1365–1375. doi:10.1093/cercor/bhh097

    Article  PubMed  Google Scholar 

  • Ropert N, Guy N (1991) Serotonin facilitates GABAergic transmission in the CA1 region of rat hippocampus in vitro. J Physiol 441:121–136

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • San Paulo A, García R (2000) High-resolution imaging of antibodies by tapping-mode atomic force microscopy: attractive and repulsive tip-sample interaction regimes. Biophys J 78(3):1599–1605. doi:10.1016/S0006-3495(00)76712-9

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Semba K (2000) Multiple output pathways of the basal forebrain: organization, chemical heterogeneity, and roles in vigilance. Behav Brain Res 115(2):117–141

    Article  CAS  PubMed  Google Scholar 

  • Somogyi J, Baude A, Omori Y, Shimizu H, El Mestikawy S, Fukaya M, Shigemoto R, Watanabe M, Somogyi P (2004) GABAergic basket cells expressing cholecystokinin contain vesicular glutamate transporter type 3 (vGluT3) in their synaptic terminals in hippocampus and isocortex of the rat. Eur J Neurosci 19(3):552–569

    Article  PubMed  Google Scholar 

  • Szabadits E, Cserép C, Szonyi A, Fukazawa Y, Shigemoto R, Watanabe M, Itohara S, Freund TF, Nyiri G (2011) NMDA receptors in hippocampal GABAergic synapses and their role in nitric oxide signaling. J Neurosci 31(16):5893–5904. doi:10.1523/JNEUROSCI.5938-10.2011 (pii: 31/16/5893)

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Takács VT, Freund TF, Gulyás AI (2008) Types and synaptic connections of hippocampal inhibitory neurons reciprocally connected with the medial septum. Eur J Neurosci 28(1):148–164. doi:10.1111/j.1460-9568.2008.06319.x

    Article  PubMed  Google Scholar 

  • Takács VT, Freund TF, Nyiri G (2013) Neuroligin 2 is expressed in synapses established by cholinergic cells in the mouse brain. PLoS One 8(9):e72450. doi:10.1371/journal.pone.0072450

    Article  PubMed  PubMed Central  Google Scholar 

  • Varga C, Sík A, Lavallée P, Deschênes M (2002) Dendroarchitecture of relay cells in thalamic barreloids: a substrate for cross-whisker modulation. J Neurosci 22 (14):6186–6194

  • Varga V, Losonczy A, Zemelman BV, Borhegyi Z, Nyiri G, Domonkos A, Hangya B, Holderith N, Magee JC, Freund TF (2009) Fast synaptic subcortical control of hippocampal circuits. Science 326(5951):449–453. doi:10.1126/science.1178307 (pii: 326/5951/449)

    Article  CAS  PubMed  Google Scholar 

  • Varoqueaux F, Jamain S, Brose N (2004) Neuroligin 2 is exclusively localized to inhibitory synapses. Eur J Cell Biol 83(9):449–456. doi:10.1078/0171-9335-00410

    Article  CAS  PubMed  Google Scholar 

  • Vassilev PM, Mitchel J, Vassilev M, Kanazirska M, Brown EM (1997) Assessment of frequency-dependent alterations in the level of extracellular Ca2+ in the synaptic cleft. Biophys J 72(5):2103–2116. doi:10.1016/S0006-3495(97)78853-2

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Vertes RP, Kocsis B (1997) Brainstem-diencephalo-septohippocampal systems controlling the theta rhythm of the hippocampus. Neuroscience 81(4):893–926

    Article  CAS  PubMed  Google Scholar 

  • Vertes RP, Martin GF (1988) Autoradiographic analysis of ascending projections from the pontine and mesencephalic reticular formation and the median raphe nucleus in the rat. J Comp Neurol 275(4):511–541. doi:10.1002/cne.902750404

    Article  CAS  PubMed  Google Scholar 

  • Vertes RP, Fortin WJ, Crane AM (1999) Projections of the median raphe nucleus in the rat. J Comp Neurol 407(4):555–582. doi:10.1002/(SICI)1096-9861(19990517)407:4<555:AID-CNE7>3.0.CO;2-E

    Article  CAS  PubMed  Google Scholar 

  • Watanabe M, Fukaya M, Sakimura K, Manabe T, Mishina M, Inoue Y (1998) Selective scarcity of NMDA receptor channel subunits in the stratum lucidum (mossy fibre-recipient layer) of the mouse hippocampal CA3 subfield. Eur J Neurosci 10(2):478–487

    Article  CAS  PubMed  Google Scholar 

  • Yuen EY, Jiang Q, Chen P, Gu Z, Feng J, Yan Z (2005) Serotonin 5-HT1A receptors regulate NMDA receptor channels through a microtubule-dependent mechanism. J Neurosci 25(23):5488–5501. doi:10.1523/JNEUROSCI.1187-05.2005

    Article  CAS  PubMed  Google Scholar 

  • Zhang L, Ren G (2012) IPET and FETR: experimental approach for studying molecular structure dynamics by cryo-electron tomography of a single-molecule structure. PLoS One 7(1):e30249. doi:10.1371/journal.pone.0030249

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgments

We thank Emőke Szépné Simon, Katalin Lengyel, Katalin Iványi and Győző Goda for the excellent technical assistance and Dr. Ferenc Mátyás for technical discussions. We thank Dr. Viktor Varga for his comments on the previous version of the manuscript. The authors wish to thank László Barna, the Nikon Microscopy Center at IEM, Nikon Austria GmbH and Auro-Science Consulting Ltd for kindly providing technical support for fluorescent microscopy. This work was supported by the National Institutes of Health (grant number NS030549), National Office for Research and Technology–Hungarian Scientific Research Fund (NKTH-OTKA, grant number CNK77793, K83251) and European Research Council (grant number ERC-2011-ADG-294313, SERRACO). András Szőnyi was supported by the European Union and the State of Hungary, co-financed by the European Social Fund in the framework of TÁMOP 4.2.4. A/1-11-1-2012-0001 “National Excellence Program”. Gabor Nyiri was supported by a János Bolyai Research Scholarship.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Gábor Nyiri.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Szőnyi, A., Mayer, M.I., Cserép, C. et al. The ascending median raphe projections are mainly glutamatergic in the mouse forebrain. Brain Struct Funct 221, 735–751 (2016). https://doi.org/10.1007/s00429-014-0935-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00429-014-0935-1

Keywords

Navigation