Skip to main content
Log in

Phentermine induces conditioned rewarding effects via activation of the PI3K/Akt signaling pathway in the nucleus accumbens

  • Original Investigation
  • Published:
Psychopharmacology Aims and scope Submit manuscript

Abstract

Rationale

Phentermine is structurally similar to methamphetamine and is widely used as an anti-obesity drug in the USA and many other countries. The potential for reward of phentermine has been noted; however, the mechanisms of phentermine dependence have not been established.

Objectives

Here, we investigated the rewarding and dopaminergic behavioral responses to phentermine in mice and found that phentermine produced conditioned rewarding effects through the phosphoinositide 3-kinase (PI3K)/Akt signaling pathway in the nucleus accumbens (NAc).

Methods

The impact of phentermine was assessed using conditioned place preference (CPP) test, climbing behavior test, and western blot analysis.

Results

Phentermine 1 and 3 mg/kg (i.p.) significantly increased CPP. Phentermine, a known dopamine releaser, boosted apomorphine-induced climbing behavior in mice, and methamphetamine (i.p.) also increased apomorphine-induced dopaminergic behavior. Phentermine and methamphetamine increased the level of expression of the dopamine transporter (DAT) and phospho-Akt proteins to a similar degree in the NAc of CPP mice. To determine whether the conditioned rewarding effects of phentermine were mediated through the PI3K/Akt pathway, we assessed the effects of the Akt inhibitor LY294002 on phentermine-induced place preference and climbing behavior. LY294002 (1 and 3 μg/site, i.c.v.) reduced phentermine-induced CPP and phentermine-increased climbing behavior. However, LY294002 did not change CPP and climbing behavior itself and also did not decrease apomorphine-induced climbing behavior in mice. Further, LY294002 decreased the phentermine-increased levels of DAT protein and phosphorylation of Akt in the NAc of CPP mice.

Conclusions

Thus, these findings suggest that phentermine induces conditioned rewarding effects via activation of the PI3K/Akt signaling pathway in the NAc.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  • Beaulieu JM (2012) A role for Akt and glycogen synthase kinase-3 as integrators of dopamine and serotonin neurotransmission in mental health. J Psychiatry Neurosci 37:7–16

    Article  PubMed  PubMed Central  Google Scholar 

  • Beaulieu JM, Gainetdinov RR, Caron MG (2009) Akt/GSK3 signaling in the action of psychotropic drugs. Annu Rev Pharmacol Toxicol 49:327–347

    Article  CAS  PubMed  Google Scholar 

  • Blakely RD, Defelice LJ, Galli A (2005) Biogenic amine neurotransmitter transporters: just when you thought you knew them. Physiology (Bethesda) 20:225–231

    Article  CAS  Google Scholar 

  • Braren SH, Drapala D, Tulloch IK, Serrano PA (2014) Methamphetamine-induced short-term increase and long-term decrease in spatial working memory affects protein Kinase M zeta (PKMzeta), dopamine, and glutamate receptors. Front Behav Neurosci 8:438

    Article  PubMed  PubMed Central  Google Scholar 

  • Carvelli L, Moron JA, Kahlig KM, Ferrer JV, Sen N, Lechleiter JD, Leeb-Lundberg LM, Merrill G, Lafer EM, Ballou LM, Shippenberg TS, Javitch JA, Lin RZ, Galli A (2002) PI 3-kinase regulation of dopamine uptake. J Neurochem 81:859–869

    Article  CAS  PubMed  Google Scholar 

  • Cha HJ, Lee HA, Ahn JI, Jeon SH, Kim EJ, Jeong HS (2013) Dependence potential of quetiapine: behavioral pharmacology in rodents. Biomol Ther (Seoul) 21:307–312

    Article  CAS  Google Scholar 

  • Cha HJ, Song MJ, Lee KW, Kim EJ, Kim YH, Lee Y, Seong WK, Hong SI, Jang CG, Yoo HS, Jeong HS (2014) Dependence potential of tramadol: behavioral pharmacology in rodents. Biomol Ther (Seoul) 22:558–562

    Article  CAS  Google Scholar 

  • Chauhan H, Killinger BA, Miller CV, Moszczynska A (2014) Single and binge methamphetamine administrations have different effects on the levels of dopamine D2 autoreceptor and dopamine transporter in rat striatum. Int J Mol Sci 15:5884–5906

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Choi CS, Hong M, Kim KC, Kim JW, Yang SM, Seung H, Ko MJ, Choi DH, You JS, Shin CY, Bahn GH (2014) Effects of atomoxetine on hyper-locomotive activity of the prenatally valproate-exposed rat offspring. Biomol Ther (Seoul) 22:406–413

    Article  CAS  Google Scholar 

  • Cui Y, Zhang XQ, Xin WJ, Jing J, Liu XG (2010) Activation of phosphatidylinositol 3-kinase/Akt-mammalian target of Rapamycin signaling pathway in the hippocampus is essential for the acquisition of morphine-induced place preference in rats. Neuroscience 171:134–143

    Article  CAS  PubMed  Google Scholar 

  • Figlewicz DP, Szot P, Chavez M, Woods SC, Veith RC (1994) Intraventricular insulin increases dopamine transporter mRNA in rat VTA/substantia nigra. Brain Res 644:331–334

    Article  CAS  PubMed  Google Scholar 

  • Galici R, Galli A, Jones DJ, Sanchez TA, Saunders C, Frazer A, Gould GG, Lin RZ, France CP (2003) Selective decreases in amphetamine self-administration and regulation of dopamine transporter function in diabetic rats. Neuroendocrinology 77:132–140

    Article  CAS  PubMed  Google Scholar 

  • Garcia BG, Wei Y, Moron JA, Lin RZ, Javitch JA, Galli A (2005) Akt is essential for insulin modulation of amphetamine-induced human dopamine transporter cell-surface redistribution. Mol Pharmacol 68:102–109

    CAS  PubMed  Google Scholar 

  • Ghisi V, Ramsey AJ, Masri B, Gainetdinov RR, Caron MG, Salahpour A (2009) Reduced D2-mediated signaling activity and trans-synaptic upregulation of D1 and D2 dopamine receptors in mice overexpressing the dopamine transporter. Cell Signal 21:87–94

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Go RE, Hwang KA, Kim SH, Lee MY, Kim CW, Jeon SY, Kim YB, Choi KC (2014) Effects of anti-obesity drugs, phentermine and mahuang, on the behavioral patterns in Sprague-Dawley rat model. Lab Anim Res 30:73–78

    Article  PubMed  PubMed Central  Google Scholar 

  • Gruner JA, Marcy VR, Lin YG, Bozyczko-Coyne D, Marino MJ, Gasior M (2009) The roles of dopamine transport inhibition and dopamine release facilitation in wake enhancement and rebound hypersomnolence induced by dopaminergic agents. Sleep 32:1425–1438

    PubMed  PubMed Central  Google Scholar 

  • Hainer V (2010) Drug treatment of obesity—current situation and perspectives. Cas Lek Cesk 149:513–519

    PubMed  Google Scholar 

  • Hensleigh E, Pritchard LM (2014) The effect of early environmental manipulation on locomotor sensitivity and methamphetamine conditioned place preference reward. Behav Brain Res 268:66–71

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Izzo E, Martin-Fardon R, Koob GF, Weiss F, Sanna PP (2002) Neural plasticity and addiction: PI3-kinase and cocaine behavioral sensitization. Nat Neurosci 5:1263–1264

    Article  CAS  PubMed  Google Scholar 

  • John CE, Jones SR (2007) Voltammetric characterization of the effect of monoamine uptake inhibitors and releasers on dopamine and serotonin uptake in mouse caudate-putamen and substantia nigra slices. Neuropharmacology 52:1596–1605

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Koob GF, Volkow ND (2009) Neurocircuitry of addiction. Neuropsychopharmacology 35:217–238

    Article  PubMed Central  Google Scholar 

  • Lee SY, You IJ, Kim MJ, Kwon SH, Hong SI, Kim JH, Jang MH, Oh SM, Chung KH, Jang CG (2013) The abuse potential of oxethazaine: effects of oxethazaine on drug-seeking behavior and analysis of its metabolites in plasma and hair in animal models. Pharmacol Biochem Behav 105:98–104

    Article  CAS  PubMed  Google Scholar 

  • Lute BJ, Khoshbouei H, Saunders C, Sen N, Lin RZ, Javitch JA, Galli A (2008) PI3K signaling supports amphetamine-induced dopamine efflux. Biochem Biophys Res Commun 372:656–661

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Lv T, Wang SD, Bai J (2013) Thioredoxin-1 was required for CREB activity by methamphetamine in rat pheochromocytoma cells. Cell Mol Neurobiol 33:319–325

    Article  CAS  PubMed  Google Scholar 

  • Manzanares J, Canton R, Grande C, Benedi J, Zaragoza F (1988) Amphetamine and chlorpromazine modify cerebral insulin levels in rats. Life Sci 42:21–25

    Article  CAS  PubMed  Google Scholar 

  • McCann UD, Wong DF, Yokoi F, Villemagne V, Dannals RF, Ricaurte GA (1998) Reduced striatal dopamine transporter density in abstinent methamphetamine and methcathinone users: evidence from positron emission tomography studies with [11C]WIN-35,428. J Neurosci 18:8417–8422

    CAS  PubMed  Google Scholar 

  • Mines MA, Jope RS (2012) Brain region differences in regulation of Akt and GSK3 by chronic stimulant administration in mice. Cell Signal 24:1398–1405

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Morton GJ, Gelling RW, Niswender KD, Morrison CD, Rhodes CJ, Schwartz MW (2005) Leptin regulates insulin sensitivity via phosphatidylinositol-3-OH kinase signaling in mediobasal hypothalamic neurons. Cell Metab 2:411–420

    Article  CAS  PubMed  Google Scholar 

  • Nelson DL, Gehlert DR (2006) Central nervous system biogenic amine targets for control of appetite and energy expenditure. Endocrine 29:49–60

    Article  CAS  PubMed  Google Scholar 

  • Oyemitan IA, Olayera OA, Alabi A, Abass LA, Elusiyan CA, Oyedeji AO, Akanmu MA (2015) Psychoneuropharmacological activities and chemical composition of essential oil of fresh fruits of Piper guineense (Piperaceae) in mice. J Ethnopharmacol

  • Paxinos GFKTMBS, Coordinates CneEAP, Boston A (2004) The Mouse Brain in Stereotaxic Coordinates, Compact. Elsevier Academic Press, Amsterdam; Boston

    Google Scholar 

  • Pogorelov VM, Nomura J, Kim J, Kannan G, Ayhan Y, Yang C, Taniguchi Y, Abazyan B, Valentine H, Krasnova IN, Kamiya A, Cadet JL, Wong DF, Pletnikov MV (2012) Mutant DISC1 affects methamphetamine-induced sensitization and conditioned place preference: a comorbidity model. Neuropharmacology 62:1242–1251

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Protais P, Costentin J, Schwartz JC (1976) Climbing behavior induced by apomorphine in mice: a simple test for the study of dopamine receptors in striatum. Psychopharmacology (Berl) 50:1–6

    Article  CAS  Google Scholar 

  • Rea WP, Rothman RB, Shippenberg TS (1998) Evaluation of the conditioned reinforcing effects of phentermine and fenfluramine in the rat: concordance with clinical studies. Synapse 30:107–111

    Article  CAS  PubMed  Google Scholar 

  • Robertson SD, Matthies HJ, Owens WA, Sathananthan V, Christianson NS, Kennedy JP, Lindsley CW, Daws LC, Galli A (2010) Insulin reveals Akt signaling as a novel regulator of norepinephrine transporter trafficking and norepinephrine homeostasis. J Neurosci 30:11305–11316

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Rothman RB, Elmer GI, Shippenberg TS, Rea W, Baumann MH (1998) Phentermine and fenfluramine. Preclinical studies in animal models of cocaine addiction. Ann N Y Acad Sci 844:59–74

    Article  CAS  PubMed  Google Scholar 

  • Russo SJ, Bolanos CA, Theobald DE, DeCarolis NA, Renthal W, Kumar A, Winstanley CA, Renthal NE, Wiley MD, Self DW, Russell DS, Neve RL, Eisch AJ, Nestler EJ (2007) IRS2-Akt pathway in midbrain dopamine neurons regulates behavioral and cellular responses to opiates. Nat Neurosci 10:93–99

    Article  CAS  PubMed  Google Scholar 

  • Schwab SG, Hoefgen B, Hanses C, Hassenbach MB, Albus M, Lerer B, Trixler M, Maier W, Wildenauer DB (2005) Further evidence for association of variants in the AKT1 gene with schizophrenia in a sample of European sib-pair families. Biol Psychiatry 58:446–450

    Article  CAS  PubMed  Google Scholar 

  • Schwendt M, Rocha A, See RE, Pacchioni AM, McGinty JF, Kalivas PW (2009) Extended methamphetamine self-administration in rats results in a selective reduction of dopamine transporter levels in the prefrontal cortex and dorsal striatum not accompanied by marked monoaminergic depletion. J Pharmacol Exp Ther 331:555–562

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Shah A, Silverstein PS, Singh DP, Kumar A (2012) Involvement of metabotropic glutamate receptor 5, AKT/PI3K signaling and NF-kappaB pathway in methamphetamine-mediated increase in IL-6 and IL-8 expression in astrocytes. J Neuroinflammation 9:52

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Skopp G, Jantos R (2013) Phentermine—a “weighty” or a dangerous substance? Arch Kriminol 231:116–129

    PubMed  Google Scholar 

  • Speed N, Saunders C, Davis AR, Owens WA, Matthies HJ, Saadat S, Kennedy JP, Vaughan RA, Neve RL, Lindsley CW, Russo SJ, Daws LC, Niswender KD, Galli A (2011) Impaired striatal Akt signaling disrupts dopamine homeostasis and increases feeding. PLoS ONE 6, e25169

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Sulzer D, Sonders MS, Poulsen NW, Galli A (2005) Mechanisms of neurotransmitter release by amphetamines: a review. Prog Neurobiol 75:406–433

    Article  CAS  PubMed  Google Scholar 

  • Wei Y, Williams JM, Dipace C, Sung U, Javitch JA, Galli A, Saunders C (2007) Dopamine transporter activity mediates amphetamine-induced inhibition of Akt through a Ca2+/calmodulin-dependent kinase II-dependent mechanism. Mol Pharmacol 71:835–842

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgments

This research was supported by grants (14182MFDS979) from the Ministry of Food and Drug Safety. This work was also supported by the Basic Science Research Program through the National Research Foundation of Korea (NRF) funded by the Ministry of Education, Science and Technology (NRF-2013R1A1A2062362) and (NRF-2013R1A6A3A01027711).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Choon-Gon Jang.

Ethics declarations

Conflicts of interest

None to declare.

Additional information

Sa-Ik Hong and Min-Jung Kim contributed equally to this work.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Hong, SI., Kim, MJ., You, IJ. et al. Phentermine induces conditioned rewarding effects via activation of the PI3K/Akt signaling pathway in the nucleus accumbens. Psychopharmacology 233, 1405–1413 (2016). https://doi.org/10.1007/s00213-016-4231-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00213-016-4231-z

Keywords

Navigation