Skip to main content
Log in

Alterations in behavioral responses to dopamine agonists in olfactory bulbectomized mice: relationship to changes in the striatal dopaminergic system

  • Original Investigation
  • Published:
Psychopharmacology Aims and scope Submit manuscript

Abstract

Background

Olfactory bulbectomy (OBX) in rodents is considered a putative animal model of depression. It has been reported that some abnormal behaviors observed in this animal model of depression involve dopaminergic neurons of the mesolimbic pathway. Therefore, we examined changes in the dopaminergic system in the caudate putamen (CPu), nucleus accumbens core (NAcC), and shell (NAcSh) of OBX mice and whether or not these alterations were reversed by chronic administration of imipramine.

Methods

We observed climbing behavior, which is a dopamine (DA) receptor-associated behavior, to demonstrate changes in the dopaminergic system of the mesolimbic pathway, when mice were administrated either the nonselective DA agonist apomorphine only or were pre-treated with the selective D1 antagonist SCH23390, with the selective D2 antagonist sulpiride, or with the D2/D3 partial agonist aripiprazole (ARI). Moreover, we examined tyrosine hydroxylase (TH) and D1- and D2-like receptor levels in the CPu, NAcC, and NAcSh using immunohistochemistry and autoradiography.

Results

The OBX group exhibited significantly enhanced apomorphine-induced climbing behavior, and this enhanced behavior was reversed by administration of sulpiride, ARI, and imipramine but not SCH23390. Moreover, we found a reduction in TH levels in the CPu, NAcC, and NAcSh of OBX mice and an increase in D2 receptor densities in the NAcC of OBX mice. The increased D2 receptor density observed in OBX mice was reversed by imipramine administration.

Conclusions

These findings reveal that OBX mice display enhanced DA receptor responsiveness, which may relate to some of the behavioral abnormalities reported in this animal model.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

Similar content being viewed by others

References

  • Baik JH, Picetti R, Saiardi A, Thiriet G, Dierich A, Depaulis A, Le Meur M, Borrelli E (1995) Parkinsonian-like locomotor impairment in mice lacking dopamine D2 receptors. Nature 377:424–8

    Article  CAS  PubMed  Google Scholar 

  • Bamford NS, Robinson S, Palmiter RD, Joyce JA, Moore C, Meshul CK (2004) Dopamine modulates release from corticostriatal terminals. J Neurosci 24:9541–52

    Article  CAS  PubMed  Google Scholar 

  • Balsara JJ, Nandal NV, Mane VR, Chandorkar AG (1982) Experimental evaluation of the antidepressant and neuroleptic activity of maprotiline. Indian J Physiol Pharmacol 26:183–95

    CAS  PubMed  Google Scholar 

  • Boger HA, Middaugh LD, Patrick KS, Ramamoorthy S, Denehy ED, Zhu H, Pacchioni AM, Granholm AC, McGinty JF (2007) Long-term consequences of methamphetamine exposure in young adults are exacerbated in glial cell line-derived neurotrophic factor heterozygous mice. J Neurosci 27:8816–25

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Breuer ME, Groenink L, Oosting RS, Buerger E, Korte M, Ferger B, Olivier B (2009a) Antidepressant effects of pramipexole, a dopamine D3/D2 receptor agonist, and 7-OH-DPAT, a dopamine D3 receptor agonist, in olfactory bulbectomized rats. Eur J Pharmacol 616:134–40

    Article  CAS  PubMed  Google Scholar 

  • Breuer ME, van Gaalen MM, Wernet W, Claessens SE, Oosting RS, Behl B, Korte SM, Schoemaker H, Gross G, Olivier B, Groenink L (2009b) SSR149415, a non-peptide vasopressin V1b receptor antagonist, has long-lasting antidepressant effects in the olfactory bulbectomy-induced hyperactivity depression model. Naunyn Schmiedebergs Arch Pharmacol 379:101–6

    Article  CAS  PubMed  Google Scholar 

  • Brennan JA, Graf R, Grauer SM, Navarra RL, Pulicicchio CM, Hughes ZA, Lin Q, Wantuch C, Rosenzweig-Lipson S, Pruthi F, Lai M, Smith D, Goutier W, van de Neut M, Robichaud AJ, Rotella D, Feenstra RW, Kruse C, Broqua P, Beyer CE, McCreary AC, Pausch MH, Marquis KL (2010) WS-50030 [7-{4-[3-(1H-inden-3-yl)propyl]piperazin-1-yl}-1,3-benzoxazol-2(3H)-one]: a novel dopamine D2 receptor partial agonist/serotonin reuptake inhibitor with preclinical antipsychotic-like and antidepressant-like activity. J Pharmacol Exp Ther 332:190–201

    Article  CAS  PubMed  Google Scholar 

  • Cain DP (1974) The role of the olfactory bulb in limbic mechanisms. Psychol Bull 81:654–71

    Article  CAS  PubMed  Google Scholar 

  • Calcagnetti DJ, Quatrella LA, Schechter MD (1996) Olfactory bulbectomy disrupts the expression of cocaine-induced conditioned place preference. Physiol Behav 59:597–604

    Article  CAS  PubMed  Google Scholar 

  • Centonze D, Picconi B, Baunez C, Borrelli E, Pisani A, Bernardi G, Calabresi P (2002) Cocaine and amphetamine depress striatal GABAergic synaptic transmission through D2 dopamine receptors. Neuropsychopharmacology 26:164–75

    Article  CAS  PubMed  Google Scholar 

  • Chiodo LA, Antelman SM (1980a) Electroconvulsive shock: progressive dopamine autoreceptor subsensitivity independent of repeated treatment. Science 210:799–801

    Article  CAS  PubMed  Google Scholar 

  • Chiodo LA, Antelman SM (1980b) Repeated tricyclics induce a progressive dopamine autoreceptor subsensitivity independent of daily drug treatment. Nature 287:451–4

    Article  CAS  PubMed  Google Scholar 

  • Dziedzicka-Wasylewska M, Rogoz R, Klimek V, Maj J (1997) Repeated administration of antidepressant drugs affects the levels of mRNA coding for D1 and D2 dopamine receptors in the rat brain. J Neural Transm (Vienna) 104:515–24

    Article  CAS  Google Scholar 

  • Feltenstein MW, Altar CA, See RE (2007) Aripiprazole blocks reinstatement of cocaine seeking in an animal model of relapse. Biol Psychiatry 61:582–90

    Article  CAS  PubMed  Google Scholar 

  • Fetsko LA, Xu R, Wang Y (2003) Alterations in D1/D2 synergism may account for enhanced stereotypy and reduced climbing in mice lacking dopamine D2L receptor. Brain Res 967:191–200

    Article  CAS  PubMed  Google Scholar 

  • Friedman A, Dremencov E, Crown H, Levy D, Mintz M, Overstreet DH, Yadid G (2005) Variability of the mesolimbic neuronal activity in a rat model of depression. Neuroreport 16:513–6

    Article  PubMed  Google Scholar 

  • Ghosh PK, Hrdina PD (1977) Effects of tricyclic antidepressants on the content and metabolism of dopamine in the rat striatum. Can J Physiol Pharmacol 55:383–8

    Article  CAS  PubMed  Google Scholar 

  • Gottesfeld Z, Garcia CJ, Lingham RB, Chronister RB (1989) Prenatal ethanol exposure impairs lesion-induced plasticity in a dopaminergic synapse after maturity. Neuroscience 29:715–23

    Article  CAS  PubMed  Google Scholar 

  • Greenaway M, Elbe D (2009) Focus on aripiprazole: a review of its use in child and adolescent psychiatry. J Can Acad Child Adolesc Psychiatr 18:250–60

    Article  Google Scholar 

  • Heimer L, Zahm DS, Alheid GF (1995) Basal ganglia. In: Paxinos G (ed) The rat nervous system. Academic Press, San Diego, pp 579–628

    Google Scholar 

  • Hendriksen H, Korte SM, Olivier B, Oosting RS (2015) The olfactory bulbectomy model in mice and rat: one story or two tails? Eur J Pharmacol 753:105–13

    Article  CAS  PubMed  Google Scholar 

  • Holmes PV, Masini CV, Primeaux SD, Garrett JL, Zellner A, Stogner KS, Duncan AA, Crystal JD (2002) Intravenous self-administration of amphetamine is increased in a rat model of depression. Synapse 46:4–10

    Article  CAS  PubMed  Google Scholar 

  • Holmes PV (1999) Olfactory bulbectomy increases prepro-enkephalin mRNA levels in the ventral striatum in rats. Neuropeptides 33:206–11

    Article  CAS  PubMed  Google Scholar 

  • Hozumi S, Nakagawasai O, Tan-No K, Niijima F, Yamadera F, Murata A, Arai Y, Yasuhara H, Tadano T (2003) Characteristics of changes in cholinergic function and impairment of learning and memory-related behavior induced by olfactory bulbectomy. Behav Brain Res 138:9–15

    Article  CAS  PubMed  Google Scholar 

  • Jancsàr SM, Leonard BE (1984) Changes in neurotransmitter metabolism following olfactory bulbectomy in the rat. Prog Neuropsychopharmacol Biol Psychiatry 8:263–9

    Article  PubMed  Google Scholar 

  • Jancsár SM, Leonard BE (1983) Behavioural and neurochemical interactions between chronic reserpine and chronic antidepressants. A possible model for the detection of atypical antidepressants. Biochem Pharmacol 32:1569–71

    Article  PubMed  Google Scholar 

  • Kelly JP, Wrynn AS, Leonard BE (1997) The olfactory bulbectomized rat as a model of depression: an update. Pharmacol Ther 74:299–316

    Article  CAS  PubMed  Google Scholar 

  • Kelly MA, Rubinstein M, Phillips TJ, Lessov CN, Burkhart-Kasch S, Zhang G, Bunzow JR, Fang Y, Gerhardt GA, Grandy DK, Low MJ (1998) Locomotor activity in D2 dopamine receptor-deficient mice is determined by gene dosage, genetic background, and developmental adaptations. J Neurosci 18:3470–9

    CAS  PubMed  Google Scholar 

  • Larsson K (1971) Impaired mating performances in male rats after anosmia induced peripherally or centrally. Brain Behav Evol 4:463–71

    Article  CAS  PubMed  Google Scholar 

  • Lumia AR, Teicher MH, Salchli F, Ayers E, Possidente B (1992) Olfactory bulbectomy as a model for agitated hyposerotonergic depression. Brain Res 587:181–5

    Article  CAS  PubMed  Google Scholar 

  • Maj J, Dziedzicka-Wasylewska M, Rogoz R, Rogóz Z, Skuza G (1996) Antidepressant drugs given repeatedly change the binding of the dopamine D2 receptor agonist, [3H]N-0437, to dopamine D2 receptors in the rat brain. Eur J Pharmacol 304:49–54

    Article  CAS  PubMed  Google Scholar 

  • Masini CV, Holmes PV, Freeman KG, Maki AC, Edwards GL (2004) Dopamine overflow is increased in olfactory bulbectomized rats: an in vivo microdialysis study. Physiol Behav 81:111–9

    Article  CAS  PubMed  Google Scholar 

  • Mele A, Avena M, Roullet P, De Leonibus E, Mandillo S, Sargolini F, Coccurello R, Oliverio A (2004) Nucleus accumbens dopamine receptors in the consolidation of spatial memory. Behav Pharmacol 15:423–31

    Article  CAS  PubMed  Google Scholar 

  • Mucignat-Caretta C, Bondí M, Caretta A (2006) Time course of alterations after olfactory bulbectomy in mice. Physiol Behav 89:637–43

    Article  CAS  PubMed  Google Scholar 

  • Nakagawasai O, Yamadera F, Iwasaki K, Asao T, Tan-No K, Niijima F, Arai H, Tadano T (2007) Preventive effect of kami-untan-to on performance in the forced swimming test in thiamine-deficient mice: relationship to functions of catecholaminergic neurons. Behav Brain Res 177:315–21

    Article  PubMed  Google Scholar 

  • Nakagawasai O, Hozumi S, Tan-No K, Niijima F, Arai Y, Yasuhara H, Tadano T (2003a) Immunohistochemical fluorescence intensity reduction of brain somatostatin in the impairment of learning and memory-related behaviour induced by olfactory bulbectomy. Behav Brain Res 142:63–7

    Article  CAS  PubMed  Google Scholar 

  • Nakagawasai O, Tadano T, Arai Y, Hozumi S, Oba A, Tan-No K, Yasuhara H, Kisara K, Oreland L (2003b) Enhancement of 5-hydroxytryptamine-induced head-twitch response after olfactory bulbectomy. Neuroscience 117:1017–23

    Article  CAS  PubMed  Google Scholar 

  • Nestler EJ, Carlezon WA Jr (2006) The mesolimbic dopamine reward circuit in depression. Biol Psychiatry 59:1151–9

    Article  CAS  PubMed  Google Scholar 

  • Papp M, Klimek V, Willner P (1994) Parallel changes in dopamine D2 receptor binding in limbic forebrain associated with chronic mild stress-induced anhedonia and its reversal by imipramine. Psychopharmacology (Berl) 115:441–6

    Article  CAS  Google Scholar 

  • Ploeger GE, Spruijt BM, Cools AR (1994) Spatial localization in the Morris water maze in rats: acquisition is affected by intra-accumbens injections of the dopaminergic antagonist haloperidol. Behav Neurosci 108:927–34

    Article  CAS  PubMed  Google Scholar 

  • Protais P, Costentin J, Schwartz JC (1976) Climbing behavior induced by apomorphine in mice: a simple test for the study of dopamine receptors in striatum. Psychopharmacology (Berl) 50:1–6

    Article  CAS  Google Scholar 

  • Randrup A, Mogilnicka E (1976) Spectrum of pharmacological actions on brain dopamine. Indications for development of new psychoactive drugs. Discussion of amantadines as examples of new drugs with special actions on dopamine systems. Pol J Pharmacol Pharm 28:551–6

    CAS  PubMed  Google Scholar 

  • Rosin DL, Melia K, Knorr AM, Nestler EJ, Roth RH, Duman RS (1995) Chronic imipramine administration alters the activity and phosphorylation state of tyrosine hydroxylase in dopaminergic regions of rat brain. Neuropsychopharmacology 12:113–21

    Article  CAS  PubMed  Google Scholar 

  • Salamone JD, Correa M (2012) The mysterious motivational functions of mesolimbic dopamine. Neuron 76:470–85

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Sarkisova KY, Kulikov MA, Midzyanovskaya IS, Folomkina AA (2008) Dopamine-dependent nature of depression-like behavior in WAG/Rij rats with genetic absence epilepsy. Neurosci Behav Physiol 38:119–28

    Article  CAS  PubMed  Google Scholar 

  • Sato A, Nakagawasai O, Tan-No K, Onogi H, Niijima F, Tadano T (2010a) Effect of non-selective dopaminergic receptor agonist on disrupted maternal behavior in olfactory bulbectomized mice. Behav Brain Res 210:251–6

    Article  CAS  PubMed  Google Scholar 

  • Sato A, Nakagawasai O, Tan-No K, Onogi H, Niijima F, Tadano T (2010b) Influence of olfactory bulbectomy on maternal behavior and dopaminergic function in nucleus accumbens in mice. Behav Brain Res 215:141–5

    Article  CAS  PubMed  Google Scholar 

  • Segal DS (1976) Differential effects of para-chlorophenylalanine on amphetamine-induced locomotion and stereotypy. Brain Res 116:267–76

    Article  CAS  PubMed  Google Scholar 

  • Setlow B, McGaugh JL (1998) Sulpiride infused into the nucleus accumbens posttraining impairs memory of spatial water maze training. Behav Neurosci 112:603–10

    Article  CAS  PubMed  Google Scholar 

  • Sieck MH (1972) The role of the olfactory system in avoidance learning and activity. Physiol Behav 8:705–10

    Article  CAS  PubMed  Google Scholar 

  • Song C, Leonard BE (1995) The effect of olfactory bulbectomy in the rat, alone or in combination with antidepressants and endogenous factors, on immune function. Hum Psychopharmacol 10:7–18

    Article  CAS  Google Scholar 

  • Song C, Leonard BE (2005) The olfactory bulbectomised rat as a model of depression. Neurosci Biobehav Rev 29:627–47

    Article  PubMed  Google Scholar 

  • Sutoo D, Akiyama K, Yabe K (2001) Quantitative imaging of tyrosine hydroxylase and calmodulin in the human brain. J Neurosci Res 63:369–76

    Article  CAS  PubMed  Google Scholar 

  • Todzy I, Coper H, Fernandes M (1978) Interaction between d-amphetamine and ethanol with respect to locomotion, stereotypies, ethanol sleeping time, and the kinetics of drug elimination. Psychopharmacology (Berl) 59:143–9

    Article  CAS  Google Scholar 

  • Willner P (1983) Dopamine and depression: a review of recent evidence. I Empirical studies Brain Res 287:211–24

    CAS  PubMed  Google Scholar 

  • Xueliang F, Ming X, Ellen J (2010) Hess D2 dopamine receptor subtype-mediated hyperactivity and amphetamine responses in a model of ADHD. Neurobiol Dis 37:228–236

    Article  Google Scholar 

  • Zhou QY, Palmiter RD (1995) Dopamine-deficient mice are severely hypoactive, adipsic, and aphagic. Cell 83:1197–209

    Article  CAS  PubMed  Google Scholar 

  • Zhu JP, Xu W, Angulo JA (2005) Disparity in the temporal appearance of methamphetamine-induced apoptosis and depletion of dopamine terminal markers in the striatum of mice. Brain Res 1049:171–81

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgments

This study was supported in part by Grants-in-Aid for Scientific Research (26460102) and Matching Fund Subsidy for Private Universities from the Ministry of Education, Culture, Sports, Science, and Technology of Japan. The authors would like to thank Ms. Reina Hoshi, Mr. Shusuke Kawamura, Ms. Jia-Rong Lin, Ms. Eri Kikuchi, and Ms. Wakana Sakuma of Tohoku Pharmaceutical University for their technical assistance.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Osamu Nakagawasai.

Ethics declarations

All experiments were performed with the approval of the Ethics Committee for Animal Experimentation at Tohoku Pharmaceutical University and according to the National Institutes of Health Guide for the Care and Use of Laboratory Animals.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Takahashi, K., Nakagawasai, O., Nemoto, W. et al. Alterations in behavioral responses to dopamine agonists in olfactory bulbectomized mice: relationship to changes in the striatal dopaminergic system. Psychopharmacology 233, 1311–1322 (2016). https://doi.org/10.1007/s00213-016-4224-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00213-016-4224-y

Keywords

Navigation