Skip to main content
Log in

Dopa therapy and action impulsivity: subthreshold error activation and suppression in Parkinson’s disease

  • Original Investigation
  • Published:
Psychopharmacology Aims and scope Submit manuscript

Abstract

Rationale

Impulsive actions entail (1) capture of the motor system by an action impulse, which is an urge to act and (2) failed suppression of that impulse in order to prevent a response error. Several studies indicate that dopaminergic treatment can induce action impulsivity in patients diagnosed with Parkinson’s disease (PD). Whether this effect is due to increased impulse expression or to decreased impulse suppression remains to be deciphered.

Method

We used a novel approach based on electromyographic (EMG) analyses to decipher the effects of the patient’s usual dopaminergic therapy on the expression and suppression of subliminal erroneous impulses. To this end, we used a within-subject design and took advantage of the Simon task, that elicits prepotent response tendencies. The patients (N = 15) performed the task on their usual dopaminergic medication and after complete medication withdrawal (for at least 12 h).

Results

The correction rate that measures the ability to suppress subthreshold impulsive muscle activity was lower when the patients were on medication as compared to their off medication state (p < 0.05). The incorrect activation rate that measures the capture of the motor system by action impulses was unaffected by medication.

Conclusions

Dopa therapy affected action impulsivity. Although medication did not influence the incidence of fast action impulses, it significantly reduced patients’ ability to abort and suppress muscle activation related to the incorrect response alternative.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  • Akkal D, Dum RP, Strick PL (2007) Supplementary motor area and presupplementary motor area: targets of basal ganglia and cerebellar output. J Neurosci 27:10659–10673

    Article  CAS  PubMed  Google Scholar 

  • Allain S, Burle B, Hasbroucq T, Vidal F (2009) Sequential adjustments before and after partial errors. Psychon Bull Rev 16:356–362

    Article  PubMed  Google Scholar 

  • Antonelli F, Ray N, Strafella AP (2011) Impulsivity and Parkinson’s disease: more than just disinhibition. J Neurol Sci 310:202–207

    Article  PubMed Central  PubMed  Google Scholar 

  • Aron AR (2007) The neural basis of inhibition in cognitive control. Neuroscientist 13:214–228

    Article  PubMed  Google Scholar 

  • Aron AR (2011) From reactive to proactive and selective control: developing a richer model for stopping inappropriate responses. Biol Psychiatry 69:E55–E68

    Article  PubMed Central  PubMed  Google Scholar 

  • Aron AR, Poldrack RA (2006) Cortical and subcortical contributions to Stop signal response inhibition: role of the subthalamic nucleus. J Neurosci 26:2424–2433

    Article  CAS  PubMed  Google Scholar 

  • Aron AR, Verbruggen F (2008) Stop the presses: dissociating a selective from a global mechanism for stopping. Psychol Sci 19:1146–1153

    Article  PubMed  Google Scholar 

  • Badry R, Mima T, Aso T, Nakatsuka M, Abe M, Fathi D et al (2009) Suppression of human cortico-motoneuronal excitability during the stop-signal task. Clin Neurophysiol 120:1717–1723

    Article  PubMed  Google Scholar 

  • Bódi N, Kéri S, Nagy H, Moustafa A, Myers CE, Daw N, Dibó G, Takáts A, Bereczki D, Gluck MA (2009) Reward-learning and the novelty-seeking personality: a between- and within-subjects study of the effects of dopamine agonists on young Parkinson’s patients. Brain 132:2385–2395

    Article  PubMed Central  PubMed  Google Scholar 

  • Bonini F, Burle B, Liégeois-Chauvel C, Régis J, Chauvel P, Vidal F (2014) Action monitoring and medial prefrontal cortex: leading role of supplementary motor area. Science 343:888–891

    Article  CAS  PubMed  Google Scholar 

  • Burle B, Bonnet M (1999) What’s an internal clock for? From temporal information processing to temporal processing of information. Behav Process 45:59–72

    Article  CAS  Google Scholar 

  • Burle B, Possamai CA, Vidal F, Bonnet M, Hasbroucq T (2002) Executive control in the Simon effect: an electromyographic and distributional analysis. Psychol Res 66:324–336

    Article  PubMed  Google Scholar 

  • Burle B, Roger C, Allain S, Vidal F, Hasbroucq T (2008) Error negativity does not reflect conflict: a re-appraisal of conflict monitoring and anterior cingulate cortex activity. J Cogn Neurosci 20:1637–1655

    Article  PubMed  Google Scholar 

  • Christenson GA, Faber RJ, de Zwaan M (1994) Compulsive buying: descriptive characteristics and psychiatric comorbidity. J Clin Psychiatry 55:5–11

    CAS  PubMed  Google Scholar 

  • Claffey MP, Sheldon S, Stinear CM, Verbruggen F, Aron AR (2010) Having a goal to stop action is associated with advance control of specific motor representations. Neuropsychologia 48:541–548

    Article  PubMed Central  PubMed  Google Scholar 

  • Cools R, Barker RA, Sahakian BJ, Robbins TW (2001) Enhanced or impaired cognitive function in Parkinson’s disease as a function of dopaminergic medication and task demands. Cereb Cortex 11:1136–1143

    Article  CAS  PubMed  Google Scholar 

  • Cools R, Barker RA, Sahakian BJ, Robbins TW (2003) l-Dopa medication remediates cognitive inflexibility, but increases impulsivity in patients with Parkinson’s disease. Neuropsychol 41:1431–1441

    Article  Google Scholar 

  • Dalley JW, Mar AC, Economidou D, Robbins TW (2008) Neurobehavioral mechanisms of impulsivity: fronto-striatal systems and functional neurochemistry. Pharmacol Biochem Behav 90(2):250–260

    Article  CAS  PubMed  Google Scholar 

  • de Jong R, Liang CC, Lauber E (1994) Conditional and unconditional automaticity: a dual-process model of effects of spatial stimulus–response correspondence. J Exp Psychol Hum Percept Perform 20:731–750

    Article  PubMed  Google Scholar 

  • DeYoung CG, Cicchetti D, Rogosch FA, Gray JR, Eastman M, Grigorenko EL (2011) Sources of cognitive exploration: genetic variation in the prefrontal dopamine system predicts openness/intellect. J Res Pers 45(4):364–371

    Article  PubMed Central  PubMed  Google Scholar 

  • Duthoo W, Braem S, Houtman F, Schouppe N, Santens P, Notebaert W (2013) Dopaminergic medication counteracts conflict adaptation in patients with Parkinson’s disease. Neuropsychol 27:556–561

    Article  Google Scholar 

  • Erika-Florence M, Leech R, Hampshire A (2014) A functional network perspective on response inhibition and attentional control. Nat Commun 5:4073

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Falkenstein M, Hohnsbein J, Hoormann J (1991) Effects of crossmodal divided attention on late ERP components: II. Error processing in choice reaction time tasks. Electroencephalogr Clin Neurophysiol 78:447–455

    Article  CAS  PubMed  Google Scholar 

  • Frank MJ, Seeberger LC, O’reilly RC (2004) By carrot or by stick: cognitive reinforcement learning in Parkinsonism. Science 306:1940–1943

    Article  CAS  PubMed  Google Scholar 

  • Gehring WJ, Goss B, Coles MGH, Meyer DE, Donchin E (1993) A neural system for error detection and compensation. Psychol Sci 4:385–390

    Article  Google Scholar 

  • Gotham AM, Brown RG, Marsden CD (1988) Frontal cognitive function in patients with Parkinson’s disease on and off levodopa. Brain 111:299–321

    Article  PubMed  Google Scholar 

  • Hampshire A, Thompson R, Duncan J, Owen AM (2011) Lateral prefrontal cortex subregions make dissociable contributions during fluid reasoning. Cereb Cortex 21(1):1–10

    Article  PubMed Central  PubMed  Google Scholar 

  • Hasbroucq T, Possamaï CA, Bonnet M, Vidal F (1999) Effect of the irrelevant location of the response signal on choice reaction time: an electromyographic study in humans. Psychophysiology 36:522–526

    Article  CAS  PubMed  Google Scholar 

  • Hasbroucq T, Burle B, Vidal F, Possamaï CA (2009) Stimulus-hand correspondence and direct response activation: an electromyographic analysis. Psychophysiology 46:1160–1169

    Article  PubMed  Google Scholar 

  • Hodges PW, Bui BH (1996) A comparison of computer-based methods for determination of onset of muscle contraction using electromyography. Electroencephal Clin Neurophysiol 101:511–519

    Article  CAS  Google Scholar 

  • Holroyd CB, Coles MG (2002) The neural basis of human error processing: reinforcement learning, dopamine, and the error-related negativity. Psychol Rev 109:679–709

    Article  PubMed  Google Scholar 

  • Hommel B (2011) The Simon effect as tool and heuristic. Acta Psychol 136:189–202

    Article  Google Scholar 

  • Jahfari S, Stinear CM, Claffey M, Verbruggen F, Aron AR (2010) Responding with restraint: what are the neurocognitive mechanisms? J Cogn Neurosci 22:1479–1492

    Article  PubMed Central  PubMed  Google Scholar 

  • Jianq Y, Rouder JN, Speckman PL (2004) A note on the sampling properties of the Vincentizing (quantile averaging) procedure. J Math Psychol 48:186–195

    Article  Google Scholar 

  • Kehagia AA, Housden CR, Regenthal R, Barker RA, Müller U, Rowe J, Sahakian BJ, Robbins TW (2014) Targeting impulsivity in Parkinson’s disease using atomoxetine. Brain. doi:10.1093/brain/awu117

    PubMed Central  PubMed  Google Scholar 

  • Kornblum S (1994) The way irrelevant dimensions are processed depends on what they overlap with: the case of Stroop- and Simon-like stimuli. Psychol Res 56:130–135

    Article  CAS  PubMed  Google Scholar 

  • Kornblum S, Hasbroucq T, Osman A (1990) Dimensional overlap: cognitive basis for stimulus–response compatibility—a model and taxonomy. Psychol Rev 97:253–270

    Article  CAS  PubMed  Google Scholar 

  • Logan GD, Cowan WB (1984) On the ability to inhibit thought and action: a theory of an act of control. Psychol Rev 91:295–327

    Article  Google Scholar 

  • Munakata Y, Herd SA, Chatham CH, Depue BE, Banich MT, O'Reilly RC (2011) A unified framework for inhibitory control. Trends Cogn Sci 15(10):453–459

    Article  PubMed Central  PubMed  Google Scholar 

  • Obeso I, Wilkinson L, Jahanshahi M (2011) Levodopa medication does not influence motor inhibition or conflict resolution in a conditional stop-signal task in Parkinson’s disease. Exp Brain Res 213:435–445

    Article  CAS  PubMed  Google Scholar 

  • Oldfield RC (1971) The assessment and analysis of handedness: the Edinburgh inventory. Neuropsychol 9:97–113

    Article  CAS  Google Scholar 

  • Pachella RG (1974) The interpretation of reaction time in information processing research. In: Kantowitz BH (ed) Human information processing: tutorials in performance and cognition. Erlbaum, Hillsdale, pp 41–82

    Google Scholar 

  • Praamstra P, Plat FM (2001) Failed suppression of direct visuomotor activation in Parkinson’s disease. J Cogn Neurosci 13:31–43

    Article  CAS  PubMed  Google Scholar 

  • Praamstra P, Stegeman D, Cools A, Horstink MW (1998) Reliance on external cues for movement initiation in Parkinson’s disease: evidence from movement-related potentials. Brain 121:167–177

    Article  PubMed  Google Scholar 

  • Proctor RW, Lu CH, Wang H, Dutta A (1995) Activation of response codes by relevant and irrelevant stimulus information. Acta Psychol 90:275–286

    Article  Google Scholar 

  • Rabbit PMA (1966) Errors and error correction in choice–response tasks. J Exp Psychol 71:264–272

    Article  Google Scholar 

  • Ratcliff R (1979) Group reaction time distributions and an analysis of distribution statistics. Psych Bull 86:446–461

    Article  CAS  Google Scholar 

  • Ridderinkhof KR (2002) Activation and suppression in conflict tasks: empirical clarification through distributional analyses. In: Prinz W, Hommel B (eds) Common mechanisms in perception and action. Attention and performance, vol 19. Oxford University Press, Oxford, pp 494–519

    Google Scholar 

  • Rihet P, Possamai CA, Micallef-Roll J, Blin O, Hasbroucq T (2002) Dopamine and human information processing: a reaction-time analysis of the effect of levodopa in healthy subjects. Psychopharmacology 163:62–67

    Article  CAS  PubMed  Google Scholar 

  • Rinkenauer G, Osman A, Ulrich R, Muller-Gethmann H, Mattes S (2004) On the locus of speed-accuracy trade-off in reaction time: inferences from the lateralized readiness potential. J Exp Psychol Gen 133:261–282

    Article  PubMed  Google Scholar 

  • Roger C, Bénar CG, Vidal F, Hasbroucq T, Burle B (2010) Rostral Cingulate Zone and correct response monitoring: ICA and source localization evidences for the unicity of correct- and error-negativities. NeuroImage 51:391–403

    Article  PubMed Central  PubMed  Google Scholar 

  • Scheffers MK, Coles MG, Bernstein P, Gehring WJ, Donchin E (1996) Event-related brain potentials and error-related processing: an analysis of incorrect responses to go and no-go stimuli. Psychophysiology 33(1):42–53

  • Schmiedt-Fehr C, Schwendemann G, Herrmann M, Basar-Eroglu C (2007) Parkinson’s disease and age-related alterations in brain oscillations during a Simon task. Neuroreport 18:277–281

    Article  PubMed  Google Scholar 

  • Simon JR (1990) The effects of an irrelevant directional cue on human information processing. In: Proctor RW, Reeve TG (eds) Stimulus–response compatibility: an integrated perspective. Elsevier, New York, pp 31–63

    Google Scholar 

  • Simon JR, Rudell AP (1967) Auditory S-R compatibility: the effect of an irrelevant cue on information processing. J Appl Psychol 51:300–304

    Article  CAS  PubMed  Google Scholar 

  • Smid HGOM, Mulder G, Mulder LJM (1990) Selective response activation can begin before stimulus recognition is complete: a psychophysiological and error analysis of continuous flow. Acta Psychol 74:169–201

    Article  CAS  Google Scholar 

  • Staude GH (2001) Precise onset detection of human motor responses using a whitening filter and the log-likelihood-ratio test. IEEE Trans Biomed Eng 48:1292–1305

    Article  CAS  PubMed  Google Scholar 

  • Swainson R, Rogers RD, Sahakian BJ, Summers BA, Polkey CE, Robbins TW (2000) Probabilistic learning and reversal deficits in patients with Parkinson’s disease or frontal or temporal lobe lesions: possible adverse effects of dopaminergic medication. Neuropsychol 38:596–612

    Article  CAS  Google Scholar 

  • van den Wildenberg WP, Wylie SA, Forstmann BU, Burle B, Hasbroucq T, Ridderinkhof KR (2010) To head or to heed? Beyond the surface of selective action inhibition: a review. Front Hum Neurosci. doi:10.3389/fnhum.2010.00222

    PubMed Central  PubMed  Google Scholar 

  • Vidal F, Hasbroucq T, Grapperon J, Bonnet M (2000) Is the ‘error negativity’ specific to errors? Biol Psychol 51:109–128

    Article  CAS  PubMed  Google Scholar 

  • Vincent SB (1912) The function of vibrissae in the behavior of the white rat. Behav Monog 1(5):1–181

  • Winer BJ (1971) Statistical principles in experimental design. McGraw-Hill, New York

    Google Scholar 

  • Wylie SA, Ridderinkhof KR, Elias WJ, Frysinger RC, Bashore TR, Downs KE et al (2010) Subthalamic nucleus stimulation influences expression and suppression of impulsive behavior in Parkinson’s disease. Brain 133:3611–3624

    Article  PubMed Central  PubMed  Google Scholar 

  • Wylie SA, Claassen DO, Huizenga HM, Schewel KD, Ridderinkhof KR, Bashore TR et al (2012) Dopamine agonists and the suppression of impulsive motor actions in Parkinson’s disease. J Cogn Neurosci 24:1709–17224

    Article  PubMed Central  PubMed  Google Scholar 

  • Yellott JL (1971) Correction for guessing and the speed-accuracy trade-off in choice reaction time. J Math Psychol 8:159–199

    Article  Google Scholar 

Download references

Acknowledgments

The present work was supported by an AORC grant from APHM to Frédérique Fluchère. Borís Burle is supported by a European Research Council under the European Community’s Seventh Framework Programme (FP7/2007-2013 Grant Agreement no. 241077).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Frédérique Fluchère.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Fluchère, F., Deveaux, M., Burle, B. et al. Dopa therapy and action impulsivity: subthreshold error activation and suppression in Parkinson’s disease. Psychopharmacology 232, 1735–1746 (2015). https://doi.org/10.1007/s00213-014-3805-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00213-014-3805-x

Keywords

Navigation