Skip to main content
Log in

Enhanced inhibitory control by neuropeptide Y Y5 receptor blockade in rats

  • Original Investigation
  • Published:
Psychopharmacology Aims and scope Submit manuscript

Abstract

Rationale

The neuropeptide Y (NPY) system acts in synergy with the classic neurotransmitters to regulate a large variety of functions including autonomic, affective, and cognitive processes. Research on the effects of NPY in the central nervous system has focused on food intake control and affective processes, but growing evidence of NPY involvement in attention-deficit/hyperactivity disorder (ADHD) and other psychiatric conditions motivated the present study.

Objectives

We tested the effects of the novel and highly selective NPY Y5 receptor antagonist Lu AE00654 on impulsivity and the underlying cortico-striatal circuitry in rats to further explore the possible involvement of the NPY system in pathologies characterized by inattention and impulsive behavior.

Results

A low dose of Lu AE00654 (0.03 mg/kg) selectively facilitated response inhibition as measured by the stop-signal task, whereas no effects were found at higher doses (0.3 and 3 mg/kg). Systemic administration of Lu AE00654 also enhanced the inhibitory influence of the dorsal frontal cortex on neurons in the caudate-putamen, this fronto-striatal circuitry being implicated in the executive control of behavior. Finally, by locally injecting a Y5 agonist, we observed reciprocal activation between dorsal frontal cortex and caudate-putamen neurons. Importantly, the effects of the Y5 agonist were attenuated by pretreatment with Lu AE00654, confirming the presence of Y5 binding sites modulating functional interactions within frontal-subcortical circuits.

Conclusions

These results suggest that the NPY system modulates inhibitory neurotransmission in brain areas important for impulse control, and may be relevant for the treatment of pathologies such as ADHD and drug abuse.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

Similar content being viewed by others

References

  • Acuna-Goycolea C, Tamamaki N, Yanagawa Y, Obata K, van den Pol AN (2005) Mechanisms of neuropeptide Y, peptide YY, and pancreatic polypeptide inhibition of identified green fluorescent protein-expressing GABA neurons in the hypothalamic neuroendocrine arcuate nucleus. J Neurosci 25:7406–7419

    Article  PubMed  CAS  Google Scholar 

  • Adewale AS, Macarthur H, Westfall TC (2007) Neuropeptide Y-induced enhancement of the evoked release of newly synthesized dopamine in rat striatum: mediation by Y2 receptors. Neuropharmacology 52:1396–1402

    Article  PubMed  CAS  Google Scholar 

  • Agnati LF, Fuxe K, Benfenati F, Battistini N, Harfstrand A, Tatemoto K, Hokfelt T, Mutt V (1983) Neuropeptide Y in vitro selectivity increases the number of alpha 2-adrenergic binding sites in membranes of the medulla oblongata of the rat. Acta Physiol Scand 118:293–295

    Article  PubMed  CAS  Google Scholar 

  • Allen YS, Bloom SR, Polak JM (1986) The neuropeptide Y-immunoreactive neuronal system: discovery, anatomy and involvement in neurodegenerative disease. Hum Neurobiol 5:227–234

    PubMed  CAS  Google Scholar 

  • Aoki C, Pickel VM (1990) Neuropeptide Y in cortex and striatum. Ultrastructural distribution and coexistence with classical neurotransmitters and neuropeptides. Ann N Y Acad Sci 611:186–205

    Article  PubMed  CAS  Google Scholar 

  • Armstrong JM, Lefevre-Borg F, Scatton B, Cavero I (1982) Urethane inhibits cardiovascular responses mediated by the stimulation of alpha-2 adrenoceptors in the rat. J Pharmacol Exp Ther 223:524–535

    PubMed  CAS  Google Scholar 

  • Aron AR (2007) The neural basis of inhibition in cognitive control. Neuroscientist 13:214–228

    Article  PubMed  Google Scholar 

  • Aron AR, Robbins TW, Poldrack RA (2004) Inhibition and the right inferior frontal cortex. Trends Cogn Sci 8:170–177

    Article  PubMed  Google Scholar 

  • Aron AR, Robbins TW, Poldrack RA (2014) Inhibition and the right inferior frontal cortex: one decade on. Trends Cogn Sci

  • Bari A, Robbins TW (2013a) Inhibition and impulsivity: behavioral and neural basis of response control. Prog Neurobiol 108:44–79

    Article  PubMed  Google Scholar 

  • Bari A, Robbins TW (2013b) Noradrenergic versus dopaminergic modulation of impulsivity, attention and monitoring behaviour in rats performing the stop-signal task: possible relevance to ADHD. Psychopharmacology (Berlin) 230:89–111

    Article  CAS  Google Scholar 

  • Bari A, Eagle DM, Mar AC, Robinson ES, Robbins TW (2009) Dissociable effects of noradrenaline, dopamine, and serotonin uptake blockade on stop task performance in rats. Psychopharmacology (Berlin) 205:273–283

    Article  CAS  Google Scholar 

  • Bari A, Mar AC, Theobald DE, Elands SA, Oganya KC, Eagle DM, Robbins TW (2011) Prefrontal and monoaminergic contributions to stop-signal task performance in rats. J Neurosci 31:9254–9263

    Article  PubMed Central  PubMed  CAS  Google Scholar 

  • Bi S, Kim YJ, Zheng F (2012) Dorsomedial hypothalamic NPY and energy balance control. Neuropeptides 46:309–314

    Article  PubMed Central  PubMed  CAS  Google Scholar 

  • Caberlotto L, Tinner B, Bunnemann B, Agnati L, Fuxe K (1998) On the relationship of neuropeptide Y Y1 receptor-immunoreactive neuronal structures to the neuropeptide Y-immunoreactive nerve terminal networks. A double immunolabelling analysis in the rat brain. Neuroscience 86:827–845

    Article  PubMed  CAS  Google Scholar 

  • Cardinal RN, Aitken MRF (2001) Whisker, version 2.2, computer software. http://www.whiskercontrol.com

  • Cha CI, Lee YI, Lee EY, Park KH, Baik SH (1997) Age-related changes of VIP, NPY and somatostatin-immunoreactive neurons in the cerebral cortex of aged rats. Brain Res 753:235–244

    Article  PubMed  CAS  Google Scholar 

  • Chen G, van den Pol AN (1996) Multiple NPY receptors coexist in pre- and postsynaptic sites: inhibition of GABA release in isolated self-innervating SCN neurons. J Neurosci 16:7711–7724

    PubMed  CAS  Google Scholar 

  • Coccaro EF, Lee R, Liu T, Mathe AA (2012) Cerebrospinal fluid neuropeptide Y-like immunoreactivity correlates with impulsive aggression in human subjects. Biol Psychiatry 72:997–1003

    Article  PubMed  CAS  Google Scholar 

  • Dumont Y, Martel JC, Fournier A, St-Pierre S, Quirion R (1992) Neuropeptide Y and neuropeptide Y receptor subtypes in brain and peripheral tissues. Prog Neurobiol 38:125–167

    Article  PubMed  CAS  Google Scholar 

  • Eagle DM, Robbins TW (2003) Inhibitory control in rats performing a stop-signal reaction-time task: effects of lesions of the medial striatum and d-amphetamine. Behav Neurosci 117:1302–1317

    Article  PubMed  CAS  Google Scholar 

  • Eagle DM, Tufft MR, Goodchild HL, Robbins TW (2007) Differential effects of modafinil and methylphenidate on stop-signal reaction time task performance in the rat, and interactions with the dopamine receptor antagonist cis-flupenthixol. Psychopharmacology (Berlin) 192:193–206

    Article  CAS  Google Scholar 

  • Eagle DM, Bari A, Robbins TW (2008) The neuropsychopharmacology of action inhibition: cross-species translation of the stop-signal and go/no-go tasks. Psychopharmacology (Berlin) 199:439–456

    Article  CAS  Google Scholar 

  • Eagle DM, Wong JC, Allan ME, Mar AC, Theobald DE, Robbins TW (2011) Contrasting roles for dopamine D1 and D2 receptor subtypes in the dorsomedial striatum but not the nucleus accumbens core during behavioral inhibition in the stop-signal task in rats. J Neurosci 31:7349–7356

    Article  PubMed Central  PubMed  CAS  Google Scholar 

  • Eaton K, Sallee FR, Sah R (2007) Relevance of neuropeptide Y (NPY) in psychiatry. Curr Top Med Chem 7:1645–1659

    Article  PubMed  CAS  Google Scholar 

  • Ehlers CL, Somes C, Lumeng L, Li TK (1999) Electrophysiological response to neuropeptide Y (NPY): in alcohol-naive preferring and non-preferring rats. Pharmacol Biochem Behav 63:291–299

    Article  PubMed  CAS  Google Scholar 

  • Engberg G, Oreland L, Thoren P, Svensson T (1987) Locus coeruleus neurons show reduced alpha 2-receptor responsiveness and decreased basal activity in spontaneously hypertensive rats. J Neural Transm 69:71–83

    Article  PubMed  CAS  Google Scholar 

  • Everitt BJ, Hokfelt T, Terenius L, Tatemoto K, Mutt V, Goldstein M (1984) Differential co-existence of neuropeptide Y (NPY)-like immunoreactivity with catecholamines in the central nervous system of the rat. Neuroscience 11:443–462

    Article  PubMed  CAS  Google Scholar 

  • Feil J, Sheppard D, Fitzgerald PB, Yucel M, Lubman DI, Bradshaw JL (2010) Addiction, compulsive drug seeking, and the role of frontostriatal mechanisms in regulating inhibitory control. Neurosci Biobehav Rev 35:248–275

    Article  PubMed  Google Scholar 

  • Fuxe K, Agnati LF, Harfstrand A, Martire M, Goldstein M, Grimaldi R, Bernardi P, Zini I, Tatemoto K, Mutt V (1984) Evidence for a modulation by neuropeptide Y of the alpha-2 adrenergic transmission line in central adrenaline synapses. New possibilities for treatment of hypertensive disorders. Clin Exp Hypertens A 6:1951–1956

    Article  PubMed  CAS  Google Scholar 

  • Fuxe K, Agnati LF, Harfstrand A, Zoli M, von Euler G, Grimaldi R, Merlo Pich E, Bjelke B, Eneroth P, Benfenati F et al (1990) On the role of neuropeptide Y in information handling in the central nervous system in normal and physiopathological states. Focus on volume transmission and neuropeptide Y/alpha 2 receptor interactions. Ann N Y Acad Sci 579:28–67

    Article  PubMed  CAS  Google Scholar 

  • Greco B, Carli M (2006) Reduced attention and increased impulsivity in mice lacking NPY Y2 receptors: relation to anxiolytic-like phenotype. Behav Brain Res 169:325–334

    Article  PubMed  CAS  Google Scholar 

  • Grove KL, Campbell RE, Ffrench-Mullen JM, Cowley MA, Smith MS (2000) Neuropeptide Y Y5 receptor protein in the cortical/limbic system and brainstem of the rat: expression on gamma-aminobutyric acid and corticotropin-releasing hormone neurons. Neuroscience 100:731–740

    Article  PubMed  CAS  Google Scholar 

  • Hara K, Harris RA (2002) The anesthetic mechanism of urethane: the effects on neurotransmitter-gated ion channels. Anesth Analg 94:313–318, table of contents

    PubMed  CAS  Google Scholar 

  • Heilig M, Thorsell A (2002) Brain neuropeptide Y (NPY) in stress and alcohol dependence. Rev Neurosci 13:85–94

    Article  PubMed  CAS  Google Scholar 

  • Heilig M, Vecsei L, Widerlov E (1989) Opposite effects of centrally administered neuropeptide Y (NPY) on locomotor activity of spontaneously hypertensive (SH) and normal rats. Acta Physiol Scand 137:243–248

    Article  PubMed  CAS  Google Scholar 

  • Heilig M, Vecsei L, Wahlestedt C, Alling C, Widerlov E (1990) Effects of centrally administered neuropeptide Y (NPY) and NPY13-36 on the brain monoaminergic systems of the rat. J Neural Transm Gen Sect 79:193–208

    Article  PubMed  CAS  Google Scholar 

  • Hendry SH, Jones EG, DeFelipe J, Schmechel D, Brandon C, Emson PC (1984) Neuropeptide-containing neurons of the cerebral cortex are also GABAergic. Proc Natl Acad Sci U S A 81:6526–6530

    Article  PubMed Central  PubMed  CAS  Google Scholar 

  • Huh Y, Lee W, Cho J, Ahn H (1998) Regional changes of NADPH-diaphorase and neuropeptide Y neurons in the cerebral cortex of aged Fischer 344 rats. Neurosci Lett 247:79–82

    Article  PubMed  CAS  Google Scholar 

  • Illes P, Regenold JT (1990) Interaction between neuropeptide Y and noradrenaline on central catecholamine neurons. Nature 344:62–63

    Article  PubMed  CAS  Google Scholar 

  • Kask A, Harro J, von Horsten S, Redrobe JP, Dumont Y, Quirion R (2002) The neurocircuitry and receptor subtypes mediating anxiolytic-like effects of neuropeptide Y. Neurosci Biobehav Rev 26:259–283

    Article  PubMed  CAS  Google Scholar 

  • Kawaguchi Y. (1993) Physiological, morphological, and histochemical characterization of three classes of interneurons in rat neostriatum. J Neurosci. 1993 Nov;13(11):4908–23.

  • Kawaguchi Y. (1995) Physiological subgroups of nonpyramidal cells with specific morphological characteristics in layer II/III of rat frontal cortex. J Neurosci. 1995 Apr;15(4):2638–55.

  • Lesch KP, Selch S, Renner TJ, Jacob C, Nguyen TT, Hahn T, Romanos M, Walitza S, Shoichet S, Dempfle A, Heine M, Boreatti-Hummer A, Romanos J, Gross-Lesch S, Zerlaut H, Wultsch T, Heinzel S, Fassnacht M, Fallgatter A, Allolio B, Schafer H, Warnke A, Reif A, Ropers HH, Ullmann R (2011) Genome-wide copy number variation analysis in attention-deficit/hyperactivity disorder: association with neuropeptide Y gene dosage in an extended pedigree. Mol Psychiatry 16:491–503

    Article  PubMed  CAS  Google Scholar 

  • Lipszyc J, Schachar R (2010) Inhibitory control and psychopathology: A meta-analysis of studies using the stop signal task. J Int Neuropsychol Soc 16:1064–1076

    Article  PubMed  Google Scholar 

  • Logan GD (1994) On the ability to inhibit thought and action. A users’ guide to the stop signal paradigm. In: Dagenbach D, Carr TH (eds) Inhibitory processes in attention, memory and language. Academic, San Diego, pp 189–236

    Google Scholar 

  • Maggi CA, Manzini S, Parlani M, Meli A (1984) An analysis of the effects of urethane on cardiovascular responsiveness to catecholamines in terms of its interference with Ca++ mobilization from both intra and extracellular pools. Experientia 40:52–59

    Article  PubMed  CAS  Google Scholar 

  • Mallet N, Le Moine C, Charpier S, Gonon F (2005) Feedforward inhibition of projection neurons by fast-spiking GABA interneurons in the rat striatum in vivo. J Neurosci 25:3857–3869

    Article  PubMed  CAS  Google Scholar 

  • Mallet N, Ballion B, Le Moine C, Gonon F (2006) Cortical inputs and GABA interneurons imbalance projection neurons in the striatum of parkinsonian rats. J Neurosci 26:3875–3884

    Article  PubMed  CAS  Google Scholar 

  • Maniam J, Morris MJ (2012) The link between stress and feeding behaviour. Neuropharmacology 63:97–110

    Article  PubMed  CAS  Google Scholar 

  • Martel JC, Alagar R, Robitaille Y, Quirion R (1990) Neuropeptide Y receptor binding sites in human brain. Possible alteration in Alzheimer’s disease. Brain Res 519:228–235

    Article  PubMed  CAS  Google Scholar 

  • Martire M, Fuxe K, Pistritto G, Preziosi P, Agnati LF (1986) Neuropeptide Y enhances the inhibitory effects of clonidine on 3H-noradrenaline release in synaptosomes isolated from the medulla oblongata of the male rat. J Neural Transm 67:113–124

    Article  PubMed  CAS  Google Scholar 

  • Martire M, Fuxe K, Pistritto G, Preziosi P, Agnati LF (1989a) Neuropeptide Y increases the inhibitory effects of clonidine on potassium evoked 3H-noradrenaline but not 3H-5-hydroxytryptamine release from synaptosomes of the hypothalamus and the frontoparietal cortex of the male Sprague–Dawley rat. J Neural Transm Gen Sect 78:61–72

    Article  PubMed  CAS  Google Scholar 

  • Martire M, Fuxe K, Pistritto G, Preziosi P, Agnati LF (1989b) Reduced inhibitory effects of clonidine and neuropeptide Y on 3H-noradrenaline release from synaptosomes of the medulla oblongata of the spontaneously hypertensive rat. J Neural Transm 76:181–189

    Article  PubMed  CAS  Google Scholar 

  • Mercer RE, Chee MJ, Colmers WF (2011) The role of NPY in hypothalamic mediated food intake. Front Neuroendocrinol 32:398–415

    Article  PubMed  CAS  Google Scholar 

  • Morin SM, Gehlert DR (2006) Distribution of NPY Y5-like immunoreactivity in the rat brain. J Mol Neurosci 29:109–114

    Article  PubMed  CAS  Google Scholar 

  • Oades RD, Daniels R, Rascher W (1998) Plasma neuropeptide-Y levels, monoamine metabolism, electrolyte excretion and drinking behavior in children with attention-deficit hyperactivity disorder. Psychiatry Res 80:177–186

    Article  PubMed  CAS  Google Scholar 

  • Oades RD, Sadile AG, Sagvolden T, Viggiano D, Zuddas A, Devoto P, Aase H, Johansen EB, Ruocco LA, Russell VA (2005) The control of responsiveness in ADHD by catecholamines: evidence for dopaminergic, noradrenergic and interactive roles. Dev Sci 8:122–131

    Article  PubMed  Google Scholar 

  • Ondracek JM, Dec A, Hoque KE, Lim SA, Rasouli G, Indorkar RP, Linardakis J, Klika B, Mukherji SJ, Burnazi M, Threlfell S, Sammut S, West AR (2008) Feed-forward excitation of striatal neuron activity by frontal cortical activation of nitric oxide signaling in vivo. Eur J Neurosci 27:1739–1754

    Article  PubMed  Google Scholar 

  • Packiarajan M, Jubian VJ, Jimenez HM, Chen H, Reinhard EJ, Joshi A, Burns JF, Desai M, Andersen K, Walker MW, Boyle NJ, Zhang H, Chandrasena G, Edwards TS, Wolinsky T, Papp M, Overstreet DH (2010) Discovery of Lu AE00654: an orally efficacious NPY5 antagonist with anti-depressant like behavior 32nd National Medicinal Chemistry Symposium, Minneapolis

  • Parker RM, Herzog H (1999) Regional distribution of Y-receptor subtype mRNAs in rat brain. Eur J Neurosci 11:1431–1448

    Article  PubMed  CAS  Google Scholar 

  • Paxinos G, Watson C (1986) The rat brain in stereotaxic coordinates Academic Press, New York

  • Quarta D, Leslie CP, Carletti R, Valerio E, Caberlotto L (2011) Central administration of NPY or an NPY-Y5 selective agonist increase in vivo extracellular monoamine levels in mesocorticolimbic projecting areas. Neuropharmacology 60:328–335

    Article  PubMed  CAS  Google Scholar 

  • Redrobe JP, Dumont Y, St-Pierre JA, Quirion R (1999) Multiple receptors for neuropeptide Y in the hippocampus: putative roles in seizures and cognition. Brain Res 848:153–166

    Article  PubMed  CAS  Google Scholar 

  • Redrobe JP, Dumont Y, Quirion R (2002) Neuropeptide Y (NPY) and depression: from animal studies to the human condition. Life Sci 71:2921–2937

    Article  PubMed  CAS  Google Scholar 

  • Robbins TW, Arnsten AF (2009) The neuropsychopharmacology of fronto-executive function: monoaminergic modulation. Annu Rev Neurosci 32:267–287

    Article  PubMed Central  PubMed  CAS  Google Scholar 

  • Russell VA (2002) Hypodopaminergic and hypernoradrenergic activity in prefrontal cortex slices of an animal model for attention-deficit hyperactivity disorder—the spontaneously hypertensive rat. Behav Brain Res 130:191–196

    Article  PubMed  CAS  Google Scholar 

  • Sammut S, Threlfell S, West AR (2010) Nitric oxide-soluble guanylyl cyclase signaling regulates corticostriatal transmission and short-term synaptic plasticity of striatal projection neurons recorded in vivo. Neuropharmacology 58:624–631

    Article  PubMed Central  PubMed  CAS  Google Scholar 

  • Scassellati C, Bonvicini C, Faraone SV, Gennarelli M (2012) Biomarkers and attention-deficit/hyperactivity disorder: a systematic review and meta-analyses. J Am Acad Child Adolesc Psychiatry 51(1003–1019):e20

    PubMed  Google Scholar 

  • Sorensen G, Jensen M, Weikop P, Dencker D, Christiansen SH, Loland CJ, Bengtsen CH, Petersen JH, Fink-Jensen A, Wortwein G, Woldbye DP (2012) Neuropeptide Y Y5 receptor antagonism attenuates cocaine-induced effects in mice. Psychopharmacology (Berlin) 222:565–577

    Article  CAS  Google Scholar 

  • Tannock R, Schachar RJ, Carr RP, Chajczyk D, Logan GD (1989) Effects of methylphenidate on inhibitory control in hyperactive children. J Abnorm Child Psychol 17:473–491

    Article  PubMed  CAS  Google Scholar 

  • Tatemoto K, Carlquist M, Mutt V (1982) Neuropeptide Y—a novel brain peptide with structural similarities to peptide YY and pancreatic polypeptide. Nature 296:659–660

    Article  PubMed  CAS  Google Scholar 

  • Tepper JM, Koos T, Wilson CJ (2004) GABAergic microcircuits in the neostriatum. Trends Neurosci 27:662–669

    Article  PubMed  CAS  Google Scholar 

  • van den Pol AN (2012) Neuropeptide transmission in brain circuits. Neuron 76:98–115

    Article  PubMed Central  PubMed  CAS  Google Scholar 

  • Viggiano D, Ruocco LA, Arcieri S, Sadile AG (2004) Involvement of norepinephrine in the control of activity and attentive processes in animal models of attention deficit hyperactivity disorder. Neural Plast 11:133–149

    Article  PubMed Central  PubMed  CAS  Google Scholar 

  • Walker MW, Wolinsky TD, Jubian V, Chandrasena G, Zhong H, Huang X, Miller S, Hegde LG, Marsteller DA, Marzabadi MR, Papp M, Overstreet DH, Gerald CP, Craig DA (2009) The novel neuropeptide Y Y5 receptor antagonist Lu AA33810 [N-[[trans-4-[(4,5-dihydro[1]benzothiepino[5,4-d]thiazol-2-yl)amino]cyclohexyl]me thyl]-methanesulfonamide] exerts anxiolytic- and antidepressant-like effects in rat models of stress sensitivity. J Pharmacol Exp Ther 328:900–911

    Article  PubMed  CAS  Google Scholar 

  • West MO (1998) Anesthetics eliminate somatosensory-evoked discharges of neurons in the somatotopically organized sensorimotor striatum of the rat. J Neurosci 18:9055–9068

    PubMed  CAS  Google Scholar 

  • Widdowson PS, Masten T, Halaris AE (1991) Interactions between neuropeptide Y and alpha 2-adrenoceptors in selective rat brain regions. Peptides 12:71–75

    Article  PubMed  CAS  Google Scholar 

  • Wolak ML, DeJoseph MR, Cator AD, Mokashi AS, Brownfield MS, Urban JH (2003) Comparative distribution of neuropeptide Y Y1 and Y5 receptors in the rat brain by using immunohistochemistry. J Comp Neurol 464:285–311

    Article  PubMed  CAS  Google Scholar 

  • Yokoo H, Schlesinger DH, Goldstein M (1987) The effect of neuropeptide Y (NPY) on stimulation-evoked release of [3H]norepinephrine (NE) from rat hypothalamic and cerebral cortical slices. Eur J Pharmacol 143:283–286

    Article  PubMed  CAS  Google Scholar 

  • Zhang L, Bijker MS, Herzog H (2011) The neuropeptide Y system: pathophysiological and therapeutic implications in obesity and cancer. Pharmacol Ther 131:91–113

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgments

The authors would like to thank David Theobald for invaluable technical assistance and the colleagues who have contributed to identify and characterize Lu AE00654, Mathivanan Packiarajan, Vrej J. Jubian, Mary W. Walker, Noel J. Boyle, Huailing Zhang, and Gamini Chandrasena. We would especially like to thank Manuel Cajina for providing bioanalysis data; Andrew White, Jeffrey Sprouse, and Leonard Meltzer for experimental design contributions.

Conflict of interest

This study was funded by Lundbeck Research USA through research agreements with the University of Cambridge and the Rosalind Franklin University of Medicine and Science. AB has received a speaker honorarium from Boehringer Ingelheim. TWR consults for Cambridge Cognition, Lilly, Lundbeck, Merck, Teva, Shire, Chempartners, and receives research grants from Lilly and Lundbeck. TWR receives editorial honoraria from Springer Verlag. AD, AWL, JL, DS, ED, JP, XH, BC, and ARW have no financial interests to disclose.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to A. Bari.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Bari, A., Dec, A., Lee, A.W. et al. Enhanced inhibitory control by neuropeptide Y Y5 receptor blockade in rats. Psychopharmacology 232, 959–973 (2015). https://doi.org/10.1007/s00213-014-3730-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00213-014-3730-z

Keywords

Navigation