Skip to main content
Log in

The cytisine derivatives, CC4 and CC26, reduce nicotine-induced conditioned place preference in zebrafish by acting on heteromeric neuronal nicotinic acetylcholine receptors

  • Original Investigation
  • Published:
Psychopharmacology Aims and scope Submit manuscript

Abstract

Rationale

Cigarette smoking is one of the most serious health problems worldwide and people trying to stop smoking have high rates of relapse. Zebrafish (Danio rerio), by combining pharmacological and behavioral assays, is a promising animal model for rapidly screening new compounds to induce smoking cessation.

Objectives

This study aims to identify possible acetylcholine nicotinic receptors (nAChRs) involved in mediating nicotine (NIC)-induced conditioned place preference (CPP) in zebrafish and investigate the effect of the CC4 and CC26 cytisine derivatives in reducing NIC-induced CPP.

Methods

CPP was evaluated using a two-compartment chamber, and the zebrafish were given CC4 (0.001–5 mg/kg), CC26 (0.001–1 mg/kg), cytisine (0.1–2.5 mg/kg), and varenicline (1–10 mg/kg) alone or with NIC (0.001 mg/kg). Swimming activity was evaluated using a square observational chamber. The affinity of the nicotinic ligands for native zebrafish brain nAChRs was evaluated by binding studies using [3H]-Epibatidine (Epi) and [125I]-αBungarotoxin (αBgtx) radioligands, and their subtype specificity was determined by means of electrophysiological assay of oocyte-expressed α4β2 and α7 subtypes.

Results

CC4 and CC26 induced CPP with an inverted U-shaped dose–response curve similar to that of NIC. However, when co-administered with NIC, they blocked its reinforcing or slightly aversive effect. Binding and electrophysiological studies showed that this effect was due to binding to high-affinity heteromeric but not α7-containing receptors.

Conclusions

We have further characterized CC4 and identified a new compound (CC26) that may be active in inducing smoking cessation. Zebrafish is a very useful model for screening new compounds that can affect the rewarding properties of NIC.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  • Ackerman KM, Nakkula R, Zirger JM, Beattie CE, Boyd RT (2009) Cloning and spatiotemporal expression of zebrafish neuronal nicotinic acetylcholine receptor alpha 6 and alpha 4 subunit RNAs. Dev Dyn Off Publ Am Assoc Anatomists 238:980–992

    CAS  Google Scholar 

  • Alexander SP, Mathie A, Peters JA (2011) Guide to receptors and channels (GRAC), 5th edition. Br J Pharmacol 164(Suppl 1):S1–S324

    Article  CAS  PubMed  Google Scholar 

  • Bencan Z, Levin ED (2008) The role of alpha7 and alpha4beta2 nicotinic receptors in the nicotine-induced anxiolytic effect in zebrafish. Physiol Behav 95:408–412

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Biala G, Staniak N, Budzynska B (2010) Effects of varenicline and mecamylamine on the acquisition, expression, and reinstatement of nicotine-conditioned place preference by drug priming in rats. Naunyn Schmiedeberg's Arch Pharmacol 381:361–370

    Article  CAS  Google Scholar 

  • Braida D, Limonta V, Pegorini S, Zani A, Guerini-Rocco C, Gori E, Sala M (2007) Hallucinatory and rewarding effect of salvinorin A in zebrafish: kappa-opioid and CB1-cannabinoid receptor involvement. Psychopharmacology 190:441–448

    Article  CAS  PubMed  Google Scholar 

  • Braida D, Ponzoni L, Martucci R, Sparatore F, Gotti C, Sala M (2014) Role of neuronal nicotinic acetylcholine receptors (nAChRs) on learning and memory in zebrafish. Psycopharmacol 231:1975–1985

    Article  CAS  Google Scholar 

  • Cahill K, Stead LF, Lancaster T (2011) NIC receptor partial agonists for smoking cessation. The Cochrane database of systematic reviews: CD006103

  • Carbonnelle E, Sparatore F, Canu-Boido C, Salvagno C, Baldani-Guerra B, Terstappen G, Zwart R, Vijverberg H, Clementi F, Gotti C (2003) Nitrogen substitution modifies the activity of cytisine on neuronal nicotinic receptor subtypes. Eur J Pharmacol 471:85–96

    Article  CAS  PubMed  Google Scholar 

  • Eddins D, Petro A, Williams P, Cerutti DT, Levin ED (2009) NIC effects on learning in zebrafish: the role of dopaminergic systems. Psychopharmacology 202:103–109

    Article  CAS  PubMed  Google Scholar 

  • Foulds J (2006) The neurobiological basis for partial agonist treatment of NIC dependence: varenicline. Int J Clin Pract 60:571–576

    Article  CAS  PubMed  Google Scholar 

  • Freedman R (2007) Exacerbation of schizophrenia by varenicline. Am J Psychiatry 164:1269

    Article  PubMed  Google Scholar 

  • George O, Lloyd A, Carroll FI, Damaj MI, Koob GF (2011) Varenicline blocks NIC intake in rats with extended access to NIC self-administration. Psychopharmacology 213:715–722

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Gonzales D, Rennard SI, Nides M, Oncken C, Azoulay S, Billing CB, Watsky EJ, Gong J, Williams KE, Reeves KR (2006) Varenicline, an alpha4beta2 nicotinic acetylcholine receptor partial agonist, vs sustained-release bupropion and placebo for smoking cessation: a randomized controlled trial. JAMA J Am Med Assoc 296:47–55

    Article  CAS  Google Scholar 

  • Gotti C, Clementi F, Fornari A, Gaimarri A, Guiducci S, Manfredi I, Moretti M, Pedrazzi P, Pucci L, Zoli M (2009) Structural and functional diversity of native brain neuronal nicotinic receptors. Biochem Pharmacol 78:703–711

    Article  CAS  PubMed  Google Scholar 

  • Grabus SD, Martin BR, Brown SE, Damaj MI (2006) NIC place preference in the mouse: influences of prior handling, dose and strain and attenuation by nicotinic receptor antagonists. Psychopharmacology 184:456–463

    Article  CAS  PubMed  Google Scholar 

  • Grady SR, Moretti M, Zoli M, Marks MJ, Zanardi A, Pucci L, Clementi F, Gotti C (2009) Rodent habenulo-interpeduncular pathway expresses a large variety of uncommon nAChR subtypes, but only the alpha3beta4* and alpha3beta3beta4* subtypes mediate acetylcholine release. J Neurosci Off J Soc Neurosci 29:2272–2282

    Article  CAS  Google Scholar 

  • Gupta T, Mullin MC (2010) Dissection of organs from the adult zebrafish. J Vis Exp 37:1717

    PubMed  Google Scholar 

  • Hughes JR, Stead LF, Lancaster T (2007) Antidepressants for smoking cessation. The Cochrane database of systematic reviews: CD000031

  • Jorenby DE, Hays JT, Rigotti NA, Azoulay S, Watsky EJ, Williams KE, Billing CB, Gong J, Reeves KR (2006) Efficacy of varenicline, an alpha4beta2 nicotinic acetylcholine receptor partial agonist, vs placebo or sustained-release bupropion for smoking cessation: a randomized controlled trial. JAMA J Am Med Assoc 296:56–63

    Article  CAS  Google Scholar 

  • Kedikian X, Faillace MP, Bernabeu R (2013) Behavioral and molecular analysis of nicotine-conditioned place preference in zebrafish. PLoS One 8:e69453

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Kily LJ, Cowe YC, Hussain O, Patel S, McElwaine S, Cotter FE, Brennan CH (2008) Gene expression changes in a zebrafish model of drug dependency suggest conservation of neuro-adaptation pathways. J Exp Biol 211:1623–1634

    Article  CAS  PubMed  Google Scholar 

  • Klee EW, Ebbert JO, Schneider H, Hurt RD, Ekker SC (2011) Zebrafish for the study of the biological effects of nicotine. NIC Tob Res Off J Soc Res NIC Tob 13:301–312

    Article  CAS  Google Scholar 

  • Levin ED, Limpuangthip J, Rachakonda T, Peterson M (2006) Timing of NIC effects on learning in zebrafish. Psychopharmacology 184:547–552

    Article  CAS  PubMed  Google Scholar 

  • Levin ED, Bencan Z, Cerutti DT (2007) Anxiolytic effects of NIC in zebrafish. Physiol Behav 90:54–58

    Article  CAS  PubMed  Google Scholar 

  • Marks MJ, Laverty DS, Whiteaker P, Salminen O, Grady SR, McIntosh JM, Collins AC (2010) John Daly’s compound, epibatidine, facilitates identification of nicotinic receptor subtypes. J Mol Neurosci MN 40:96–104

    Article  CAS  Google Scholar 

  • Mathur P, Guo S (2010) Use of zebrafish as a model to understand mechanisms of addiction and complex neurobehavioral phenotypes. Neurobiol Dis 40:66–72

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Matta SG, Balfour DJ, Benowitz NL, Boyd RT, Buccafusco JJ, Caggiula AR et al (2007) Guidelines on nicotine dose selection for in vivo research. Psychopharmacol (Berl) 190:269–319

    Article  CAS  Google Scholar 

  • Mihalak KB, Carroll FI, Luetje CW (2006) Varenicline is a partial agonist at alpha4beta2 and a full agonist at alpha7 neuronal nicotinic receptors. Mol Pharmacol 70:801–805

    Article  CAS  PubMed  Google Scholar 

  • Moore TJ, Furberg CD, Glenmullen J, Maltsberger JT, Singh S (2011) Suicidal behavior and depression in smoking cessation treatments. PLoS One 6:e27016

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Museo E, Wise RA (1994) Place preference conditioning with ventral tegmental injections of cytisine. Life Sci 55:1179–1186

    Article  CAS  PubMed  Google Scholar 

  • Panula P, Chen YC, Priyadarshini M, Kudo H, Semenova S, Sundvik M, Sallinen V (2010) The comparative neuroanatomy and neurochemistry of zebrafish CNS systems of relevance to human neuropsychiatric diseases. Neurobiol Dis 40:46–57

    Article  CAS  PubMed  Google Scholar 

  • Papke RL, Porter Papke JK (2002) Comparative pharmacology of rat and human alpha7 nAChR conducted with net charge analysis. Br J Pharmacol 137:49–61

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Papke RL, Stokes C (2010) Working with OpusXpress: methods for high volume oocyte experiments. Methods 51:121–133

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Papke RL, Ono F, Stokes C, Urban JM, Boyd RT (2012) The nicotinic acetylcholine receptors of zebrafish and an evaluation of pharmacological tools used for their study. Biochem Pharmacol 84:352–365

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Petzold AM, Balciunas D, Sivasubbu S, Clark KJ, Bedell VM, Westcot SE, Myers SR, Moulder GL, Thomas MJ, Ekker SC (2009) NIC response genetics in the zebrafish. Proc Natl Acad Sci U S A 106:18662–18667

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Picciotto MR, Kenny PJ (2013) Molecular mechanisms underlying behaviors related to NIC addiction. Cold Spring Harb Perspect Med 3:a012112

    Article  PubMed Central  PubMed  Google Scholar 

  • Pucci L, Grazioso G, Dallanoce C, Rizzi L, De Micheli C, Clementi F, Bertrand S, Bertrand D, Longhi R, De Amici M, Gotti C (2011) Engineering of alpha-conotoxin MII-derived peptides with increased selectivity for native alpha6beta2* nicotinic acetylcholine receptors. FASEB J Off Publ Fed Am Soc Exp Biol 25:3775–3789

    CAS  Google Scholar 

  • Rasmussen T, Swedberg MD (1998) Reinforcing effects of nicotinic compounds: intravenous self-administration in drug-naive mice. Pharmacol Biochem Behav 60:567–573

    Article  CAS  PubMed  Google Scholar 

  • Raupach T, van Schayck CP (2011) Pharmacotherapy for smoking cessation: current advances and research topics. CNS Drugs 25:371–382

    Article  CAS  PubMed  Google Scholar 

  • Rink E, Wullimann MF (2002) Connections of the ventral telencephalon and tyrosine hydroxylase distribution in the zebrafish brain (Danio rerio) lead to identification of an ascending dopaminergic system in a teleost. Brain Res Bull 57:385–387

    Article  CAS  PubMed  Google Scholar 

  • Rollema H, Chambers LK, Coe JW, Glowa J, Hurst RS, Lebel LA, Lu Y, Mansbach RS, Mather RJ, Rovetti CC, Sands SB, Schaeffer E, Schulz DW, Tingley FD 3rd, Williams KE (2007) Pharmacological profile of the alpha4beta2 nicotinic acetylcholine receptor partial agonist varenicline, an effective smoking cessation aid. Neuropharmacology 52:985–994

    Article  CAS  PubMed  Google Scholar 

  • Rollema H, Wilson GG, Lee TC, Folgering JH, Flik G (2011) Effect of co-administration of varenicline and antidepressants on extracellular monoamine concentrations in rat prefrontal cortex. Neurochem Int 58:78–84

    Article  CAS  PubMed  Google Scholar 

  • Sala M, Braida D, Pucci L, Manfredi I, Marks MJ, Wageman CR, Grady SR, Loi B, Fucile S, Fasoli F, Zoli M, Tasso B, Sparatore F, Clementi F, Gotti C (2013) CC4, a dimer of cytisine, is a selective partial agonist at alpha4beta2/alpha6beta2 nAChR with improved selectivity for tobacco smoking cessation. Br J Pharmacol 168:835–849

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Singh S, Loke YK, Spangler JG, Furberg CD (2011) Risk of serious adverse cardiovascular events associated with varenicline: a systematic review and meta-analysis. CMAJ Can Med Assoc J = J Assoc Med Can 183:1359–1366

    Article  Google Scholar 

  • Smith JW, Mogg A, Tafi E, Peacey E, Pullar IA, Szekeres P, Tricklebank M (2007) Ligands selective for alpha4beta2 but not alpha3beta4 or alpha7 nicotinic receptors generalise to the NIC discriminative stimulus in the rat. Psychopharmacology 190:157–170

    Article  CAS  PubMed  Google Scholar 

  • Spiller K, Xi ZX, Li X, Ashby CR Jr, Callahan PM, Tehim A, Gardner EL (2009) Varenicline attenuates nicotine-enhanced brain-stimulation reward by activation of alpha4beta2 nicotinic receptors in rats. Neuropharmacology 57:60–66

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Streisinger G (2000) The zebrafish book. Oregon Press, Eugene

    Google Scholar 

  • Svoboda KR, Vijayaraghavan S, Tanguay RL (2002) Nicotinic receptors mediate changes in spinal motoneuron development and axonal pathfinding in embryonic zebrafish exposed to nicotine. J Neurosci Off J Soc Neurosci 22:10731–10741

    CAS  Google Scholar 

  • Swain HA, Sigstad C, Scalzo FM (2004) Effects of dizocilpine (MK-801) on circling behavior, swimming activity, and place preference in zebrafish (Danio rerio). Neurotoxicol Teratol 26:725–729

    Article  CAS  PubMed  Google Scholar 

  • Tonstad S, Tonnesen P, Hajek P, Williams KE, Billing CB, Reeves KR (2006) Effect of maintenance therapy with varenicline on smoking cessation: a randomized controlled trial. JAMA J Am Med Assoc 296:64–71

    Article  CAS  Google Scholar 

  • Vieira-Brock PL, Miller EI, Nielsen SM, Fleckenstein AE, Wilkins DG (2011) Simultaneous quantification of nicotine and metabolites in rat brain by liquid chromatography–tandem mass spectrometry. J Chromatogr B Anal Technol Biomed Life Sci 879:3465–3474

    Article  CAS  Google Scholar 

  • Walters CL, Brown S, Changeux JP, Martin B, Damaj MI (2006) The beta2 but not alpha7 subunit of the nicotinic acetylcholine receptor is required for nicotine-conditioned place preference in mice. Psychopharmacology 184:339–344

    Article  CAS  PubMed  Google Scholar 

  • Zierler-Brown SL, Kyle JA (2007) Oral varenicline for smoking cessation. Ann Pharmacother 41:95–99

    Article  CAS  PubMed  Google Scholar 

  • Zirger JM, Beattie CE, McKay DB, Boyd RT (2003) Cloning and expression of zebrafish neuronal nicotinic acetylcholine receptors. Gene Expr Patterns GEP 3:747–754

    Article  CAS  Google Scholar 

Download references

Acknowledgments

We thank Prof. Fabio Sparatore for the generous gift of CC4 and CC26. All the authors declare that they have no conflict of interest or financial disclosures to make. Funding was received from the Italian PRIN 2009R7WCZS; the European Union grant Eranet; the CNR Research Project on Aging, Regione Lombardia Projects NUTEC ID 30263049 and MbMM-convenzione no.18099/RCC; and James and Esther King Biomedical Research 1KG12.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Cecilia Gotti.

Additional information

Luisa Ponzoni and Daniela Braida contributed equally in this study.

Luisa Ponzoni is a recipient of a fellowship from the Fondazione Fratelli Confalonieri, Milano.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Ponzoni, L., Braida, D., Pucci, L. et al. The cytisine derivatives, CC4 and CC26, reduce nicotine-induced conditioned place preference in zebrafish by acting on heteromeric neuronal nicotinic acetylcholine receptors. Psychopharmacology 231, 4681–4693 (2014). https://doi.org/10.1007/s00213-014-3619-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00213-014-3619-x

Keywords

Navigation