Skip to main content
Log in

Lithium reduces the effects of rotenone-induced complex I dysfunction on DNA methylation and hydroxymethylation in rat cortical primary neurons

  • Original Investigation
  • Published:
Psychopharmacology Aims and scope Submit manuscript

Abstract

Rationale

Mitochondrial complex I dysfunction and alterations in DNA methylation levels are consistently reported in bipolar disorder (BD) and are regulated by lithium. One of the mechanisms by which lithium may exert its effects in BD is by improving mitochondrial complex I function. Therefore, we examined whether complex I dysfunction induces methylation and hydroxymethylation of DNA and whether lithium alters these effects in rat primary cortical neurons.

Methods

Rotenone was used to induce mitochondrial complex I dysfunction. Cell viability was measured by MTT assay, and ATP levels were assessed by Cell-Titer-Glo®. Complex I activity was measured using an ELISA-based assay. Apoptosis, DNA methylation, and hydroxymethylation levels were measured by immunocytochemistry.

Results

Rotenone decreased complex I activity and ATP production, but increased cell death and apoptosis. Rotenone treatment increased levels of 5-methylcytosine (5mc) and hydroxymethylcytosine (5hmc), suggesting a possible association between complex I dysfunction and DNA alterations. Lithium prevented rotenone-induced changes in mitochondrial complex I function, cell death and changes to DNA methylation and hydroxymethylation.

Conclusions

These findings suggest that decreased mitochondrial complex I activity may increase DNA methylation and hydroxymethylation in rat primary cortical neurons and that lithium may prevent these effects.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Scheme 1

Similar content being viewed by others

References

  • Abdolmaleky HM, Cheng KH, Faraone SV, Wilcox M, Glatt SJ, Gao F, Smith CL, Shafa R, Aeali B, Carnevale J, Pan H, Papageorgis P, Ponte JF, Sivaraman V, Tsuang MT, Thiagalingam S (2006) Hypomethylation of MB-COMT promoter is a major risk factor for schizophrenia and bipolar disorder. Hum Mol Genet 15:3132–3145

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Andreazza AC, Kauer-Sant’anna M, Frey BN, Bond DJ, Kapczinski F, Young LT, Yatham LN (2008) Oxidative stress markers in bipolar disorder: a meta-analysis. J Affect Disord 111:135–144

    Article  CAS  PubMed  Google Scholar 

  • Andreazza AC, Shao L, Wang JF, Young LT (2010) Mitochondrial complex I activity and oxidative damage to mitochondrial proteins in the prefrontal cortex of patients with bipolar disorder. Arch Gen Psychiatry 67:360–368

    Article  CAS  PubMed  Google Scholar 

  • Andreazza AC, Wang JF, Salmasi F, Shao L, Young LT (2013) Specific subcellular changes in oxidative stress in prefrontal cortex from patients with bipolar disorder. J Neurochem 127(4):552–561

    Article  CAS  PubMed  Google Scholar 

  • Bachmann RF, Wang Y, Yuan P, Zhou R, Li X, Alesci S, Du J, Manji HK (2009) Common effects of lithium and valproate on mitochondrial functions: protection against methamphetamine-induced mitochondrial damage. Int J Neuropsychopharmacol 12:805–822

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Bellizzi D, D’Aquila P, Giordano M, Montesanto A, Passarino G (2012) Global DNA methylation levels are modulated by mitochondrial DNA variants. Epigenomics 4:17–27

    Article  CAS  PubMed  Google Scholar 

  • Bird A (2002) DNA methylation patterns and epigenetic memory. Genes Dev 16:6–21

    Article  CAS  PubMed  Google Scholar 

  • Boyadjieva N, Varadinova M (2012) Epigenetics of psychoactive drugs. J Pharm Pharmacol 64:1349–1358

    Article  CAS  PubMed  Google Scholar 

  • Branco MR, Ficz G, Reik W (2012) Uncovering the role of 5-hydroxymethylcytosine in the epigenome. Nat Rev Genet 13:7–13

    CAS  Google Scholar 

  • Brandt U (2006) Energy converting NADH: quinone oxidoreductase (complex I). Annu Rev Biochem 75:69–92

    Article  CAS  PubMed  Google Scholar 

  • Campos AC, Molognoni F, Melo FH, Galdieri LC, Carneiro CR, D’Almeida V, Correa M, Jasiulionis MG (2007) Oxidative stress modulates DNA methylation during melanocyte anchorage blockade associated with malignant transformation. Neoplasia 9:1111–1121

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Che Y, Wang JF, Shao L, Young T (2010) Oxidative damage to RNA but not DNA in the hippocampus of patients with major mental illness. J Psychiatry Neurosci 35:296–302

    Article  PubMed  PubMed Central  Google Scholar 

  • Chestnut BA, Chang Q, Price A, Lesuisse C, Wong M, Martin LJ (2011) Epigenetic regulation of motor neuron cell death through DNA methylation. J Neurosci 31:16619–16636

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Clay HB, Sillivan S, Konradi C (2010) Mitochondrial dysfunction and pathology in bipolar disorder and schizophrenia. Int J Dev Neurosci 29:311–324

    Article  PubMed  PubMed Central  Google Scholar 

  • Cui J, Shao L, Young LT, Wang JF (2007) Role of glutathione in neuroprotective effects of mood stabilizing drugs lithium and valproate. Neuroscience 144:1447–1453

    Article  CAS  PubMed  Google Scholar 

  • D’Addario C, Dell’Osso B, Palazzo MC, Benatti B, Lietti L, Cattaneo E, Galimberti D, Fenoglio C, Cortini F, Scarpini E, Arosio B, Di Francesco A, Di Benedetto M, Romualdi P, Candeletti S, Mari D, Bergamaschini L, Bresolin N, Maccarrone M, Altamura AC (2012) Selective DNA methylation of BDNF promoter in bipolar disorder: differences among patients with BDI and BDII. Neuropsychopharmacology 37:1647–1655

    Article  PubMed  PubMed Central  Google Scholar 

  • Dong E, Gavin DP, Chen Y, Davis J (2012) Upregulation of TET1 and downregulation of APOBEC3A and APOBEC3C in the parietal cortex of psychotic patients. Transl Psychiatry 2:e159

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Eckert A, Keil U, Marques CA, Bonert A, Frey C, Schüssel K, Müller WE (2003) Mitochondrial dysfunction, apoptotic cell death, and Alzheimer’s disease. Biochem Pharmacol 66:1627–1634

    Article  CAS  PubMed  Google Scholar 

  • Farinacci M (2007) Improved apoptosis detection in ovine neutrophils by annexin V and carboxyfluorescein diacetate staining. Cytotechnology 54:149–155

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Ficz G, Branco MR, Seisenberger S, Santos F, Krueger F, Hore TA, Marques CJ, Andrews S, Reik W (2011) Dynamic regulation of 5-hydroxymethylcytosine in mouse ES cells and during differentiation. Nature 473:398–402

    Article  CAS  PubMed  Google Scholar 

  • Grayson DR, Guidotti A (2013) The dynamics of DNA methylation in schizophrenia and related psychiatric disorders. Neuropsychopharmacology 38:138–166

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Guo JU, Ma DK, Mo H, Ball MP, Jang MH, Bonaguidi MA, Balazer JA, Eaves HL, Xie B, Ford E, Zhang K, Ming GL, Gao Y, Song H (2011a) Neuronal activity modifies the DNA methylation landscape in the adult brain. Nat Neurosci 14:1345–1351

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Guo JU, Su Y, Zhong C, Ming GL, Song H (2011b) Hydroxylation of 5-methylcytosine by TET1 promotes active DNA demethylation in the adult brain. Cell 145:423–434

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Halliwell B (1992) Reactive oxygen species and the central nervous system. J Neurochem 59:1609–1623

    Article  CAS  PubMed  Google Scholar 

  • Halliwell B (2001) Role of free radicals in the neurodegenerative diseases: therapeutic implications for antioxidant treatment. Drugs Aging 18:685–716

  • Halliwell B, Gutteridge JMC (2007) Free radicals in biology and medicine, 4th edn. Clarendon, Oxford

    Google Scholar 

  • Hernandez DG, Singleton AB (2012) Using DNA methylation to understand biological consequences of genetic variability. Neurodegener Dis 9:53–59

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Huzayyin AA, Andreazza AC, Turecki G, Cruceanu C, Rouleau GA, Alda M, Young LT (2014) Decreased global methylation in patients with bipolar disorder who respond to lithium. Int J Neuropsychopharmacol 17(4):561–569

  • Ito S, D’Alessio A, Taranova O, Hong K, Sowers L, Zhang Y (2010) Role of Tet proteins in 5mC to 5hmC conversion, ES-cell self-renewal and inner cell mass specification. Nature 466:1129–U151

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Jin S, Kadam S, Pfeifer G (2010) Examination of the specificity of DNA methylation profiling techniques towards 5-methylcytosine and 5-hydroxymethylcytosine. Nucleic Acids Res 38

  • Kang KA, Zhang R, Kim GY, Bae SC, Hyun JW (2012) Epigenetic changes induced by oxidative stress in colorectal cancer cells: methylation of tumor suppressor RUNX3. Tumour Biol 33:403–412

    Article  CAS  PubMed  Google Scholar 

  • King TD, Bijur GN, Jope RS (2001) Caspase-3 activation induced by inhibition of mitochondrial complex I is facilitated by glycogen synthase kinase-3beta and attenuated by lithium. Brain Res 919:106–114

    Article  CAS  PubMed  Google Scholar 

  • Kupfer DJ (2005) The increasing medical burden in bipolar disorder. JAMA 293:2528–2530

    Article  CAS  PubMed  Google Scholar 

  • Li N, Ragheb K, Lawler G, Sturgis J, Rajwa B, Melendez JA, Robinson JP (2003) Mitochondrial complex I inhibitor rotenone induces apoptosis through enhancing mitochondrial reactive oxygen species production. J Biol Chem 278:8516–8525

    Article  CAS  PubMed  Google Scholar 

  • Li Q, Li H, Roughton K, Wang X, Kroemer G, Blomgren K, Zhu C (2010) Lithium reduces apoptosis and autophagy after neonatal hypoxia-ischemia. Cell Death Dis 1:e56

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Lim SO, Gu JM, Kim MS, Kim HS, Park YN, Park CK, Cho JW, Park YM, Jung G (2008) Epigenetic changes induced by reactive oxygen species in hepatocellular carcinoma: methylation of the E-cadherin promoter. Gastroenterology 135:2128–2140, 2140.e1-8

    Article  CAS  PubMed  Google Scholar 

  • Lister R, Mukamel EA, Nery JR, Urich M, Puddifoot CA, Johnson ND, Lucero J, Huang Y, Dwork AJ, Schultz MD, Yu M, Tonti-Filippini J, Heyn H, Hu S, Wu JC, Rao A, Esteller M, He C, Haghighi FG, Sejnowski TJ, Behrens MM, Ecker JR (2013) Global epigenomic reconfiguration during mammalian brain development. Science 341:1237905

    Article  PubMed  PubMed Central  Google Scholar 

  • Malhi GS, Tanious M, Das P, Coulston CM, Berk M (2013) Potential mechanisms of action of lithium in bipolar disorder. Current understanding. CNS Drugs 27:135–153

    Article  PubMed  Google Scholar 

  • Matarese F, Carrillo-de Santa Pau E, Stunnenberg HG (2011) 5-Hydroxymethylcytosine: a new kid on the epigenetic block? Mol Syst Biol 7:562

    Article  PubMed  PubMed Central  Google Scholar 

  • Maurer IC, Schippel P, Volz HP (2009) Lithium-induced enhancement of mitochondrial oxidative phosphorylation in human brain tissue. Bipolar Disord 11:515–522

    Article  CAS  PubMed  Google Scholar 

  • Nohesara S, Ghadirivasfi M, Mostafavi S, Eskandari MR, Ahmadkhaniha H, Thiagalingam S, Abdolmaleky HM (2011) DNA hypomethylation of MB-COMT promoter in the DNA derived from saliva in schizophrenia and bipolar disorder. J Psychiatr Res 45:1432–1438

    Article  PubMed  Google Scholar 

  • Petronis A (2003) Epigenetics and bipolar disorder: new opportunities and challenges. Am J Med Genet C Semin Med Genet 123C:65–75

    Article  PubMed  Google Scholar 

  • Quiroz JA, Gray NA, Kato T, Manji HK (2008) Mitochondrially mediated plasticity in the pathophysiology and treatment of bipolar disorder. Neuropsychopharmacology 33:2551–2565

    Article  CAS  PubMed  Google Scholar 

  • Schutte B, Nuydens R, Geerts H, Ramaekers F (1998) Annexin V binding assay as a tool to measure apoptosis in differentiated neuronal cells. J Neurosci Methods 86:63–69

    Article  CAS  PubMed  Google Scholar 

  • Scola G, Kim HK, Young LT, Andreazza AC (2013) A fresh look at complex I in microarray data: clues to understanding disease-specific mitochondrial alterations in bipolar disorder. Biol Psychiatry 73:e4–e5

    Article  PubMed  Google Scholar 

  • Shalbuyeva N, Brustovetsky T, Brustovetsky N (2007) Lithium desensitizes brain mitochondria to calcium, antagonizes permeability transition, and diminishes cytochrome C release. J Biol Chem 282:18057–18068

    Article  CAS  PubMed  Google Scholar 

  • Shao L, Cui J, Young LT, Wang JF (2008) The effect of mood stabilizer lithium on expression and activity of glutathione s-transferase isoenzymes. Neuroscience 151:518–524

    Article  CAS  PubMed  Google Scholar 

  • Soeiro-de-Souza MG, Andreazza AC, Carvalho AF, Machado-Vieira R, Young LT, Moreno RA (2013) Number of manic episodes is associated with elevated DNA oxidation in bipolar I disorder. Int J Neuropsychopharmacol 16(7):1505–1512

  • Sun X, Wang JF, Tseng M, Young LT (2006) Downregulation in components of the mitochondrial electron transport chain in the postmortem frontal cortex of subjects with bipolar disorder. J Psychiatry Neurosci 31:189–196

    PubMed  PubMed Central  Google Scholar 

  • Tahiliani M, Koh K, Shen Y, Pastor W, Bandukwala H, Brudno Y, Agarwal S, Iyer L, Liu D, Aravind L, Rao A (2009) Conversion of 5-Methylcytosine to 5-Hydroxymethylcytosine in Mammalian DNA by MLL Partner TET1. Science 324:930–935

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Weber B, Serafin A, Michie J, Van Rensburg C, Swarts JC, Bohm L (2004) Cytotoxicity and cell death pathways invoked by two new rhodium-ferrocene complexes in benign and malignant prostatic cell lines. Anticancer Res 24:763–770

    CAS  PubMed  Google Scholar 

  • Wossidlo M, Nakamura T, Lepikhov K, Marques CJ, Zakhartchenko V, Boiani M, Arand J, Nakano T, Reik W, Walter J (2011) 5-Hydroxymethylcytosine in the mammalian zygote is linked with epigenetic reprogramming. Nat Commun 2:241

    Article  PubMed  Google Scholar 

  • Wu H, Coskun V, Tao J, Xie W, Ge W, Yoshikawa K, Li E, Zhang Y, Sun Y (2010) Dnmt3a-Dependent nonpromoter DNA methylation facilitates transcription of neurogenic genes. Science 329:444–448

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Zhang R, Kang KA, Kim KC, Na SY, Chang WY, Kim GY, Kim HS, Hyun JW (2013) Oxidative stress causes epigenetic alteration of CDX1 expression in colorectal cancer cells. Gene 524:214–219

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgment

The authors have no conflict of interest to disclose. The authors thank Brain & Behavior Research Foundation (Formerly NARSAD, ACA), CNPq/Brazil (GS), and Canadian Institutes of Health Research (CIHR) as sources of funding in support of this report (LTY and ACA).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ana C. Andreazza.

Additional information

Gustavo Scola and Helena K. Kim contribute equally for this study.

Electronic supplementary material

Below is the link to the electronic supplementary material.

ESM 1

(PDF 555 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Scola, G., Kim, H.K., Young, L.T. et al. Lithium reduces the effects of rotenone-induced complex I dysfunction on DNA methylation and hydroxymethylation in rat cortical primary neurons. Psychopharmacology 231, 4189–4198 (2014). https://doi.org/10.1007/s00213-014-3565-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00213-014-3565-7

Keywords

Navigation