Skip to main content
Log in

Amphetamine and cocaine suppress social play behavior in rats through distinct mechanisms

  • Original Investigation
  • Published:
Psychopharmacology Aims and scope Submit manuscript

Abstract

Rationale

Social play behavior is a characteristic form of social behavior displayed by juvenile and adolescent mammals. This social play behavior is highly rewarding and of major importance for social and cognitive development. Social play is known to be modulated by neurotransmitter systems involved in reward and motivation. Interestingly, psychostimulant drugs, such as amphetamine and cocaine, profoundly suppress social play, but the neural mechanisms underlying these effects remain to be elucidated.

Objective

In this study, we investigated the pharmacological underpinnings of amphetamine- and cocaine-induced suppression of social play behavior in rats.

Results

The play-suppressant effects of amphetamine were antagonized by the alpha-2 adrenoreceptor antagonist RX821002 but not by the dopamine receptor antagonist alpha-flupenthixol. Remarkably, the effects of cocaine on social play were not antagonized by alpha-2 noradrenergic, dopaminergic, or serotonergic receptor antagonists, administered either alone or in combination. The effects of a subeffective dose of cocaine were enhanced by a combination of subeffective doses of the serotonin reuptake inhibitor fluoxetine, the dopamine reuptake inhibitor GBR12909, and the noradrenaline reuptake inhibitor atomoxetine.

Conclusions

Amphetamine, like methylphenidate, exerts its play-suppressant effect through alpha-2 noradrenergic receptors. On the other hand, cocaine reduces social play by simultaneous increases in dopamine, noradrenaline, and serotonin neurotransmission. In conclusion, psychostimulant drugs with different pharmacological profiles suppress social play behavior through distinct mechanisms. These data contribute to our understanding of the neural mechanisms of social behavior during an important developmental period, and of the deleterious effects of psychostimulant exposure thereon.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  • Aragona BJ, Cleaveland NA, Stuber GD, Day JJ, Carelli RM, Wightman RM (2008) Preferential enhancement of dopamine transmission within the nucleus accumbens shell by cocaine is attributable to a direct increase in phasic dopamine release events. J Neurosci 28:8821–8831

    Article  PubMed Central  PubMed  CAS  Google Scholar 

  • Aston-Jones G, Cohen JD (2005) An integrative theory of locus coeruleus-norepinephrine function: adaptive gain and optimal performance. Annu Rev Neurosci 28:403–450

    Article  PubMed  CAS  Google Scholar 

  • Baarendse PJJ, Counotte DS, O’Donnell P, Vanderschuren LJMJ (2013) Early social experience is critical for the development of cognitive control and dopamine modulation of prefrontal cortex function. Neuropsychopharmacology 38:1485–1494

    Google Scholar 

  • Beatty WW, Dodge AM, Dodge LJ, Panksepp J (1982) Psychomotor stimulants, social deprivation and play in juvenile rats. Pharmacol Biochem Behav 16:417–422

    Article  PubMed  CAS  Google Scholar 

  • Beatty WW, Costello KB, Berry SL (1984) Suppression of play fighting by amphetamine: effects of catecholamine antagonists, agonists and synthesis inhibitors. Pharmacol Biochem Behav 20:47–755

    Article  Google Scholar 

  • Blakemore SJ, Robbins TW (2012) Decision-making in the adolescent brain. Nat Neurosci 15:1184–1191

    Google Scholar 

  • Boess FG, Martin IL (1994) Molecular biology of 5-HT receptors. Neuropharmacology 33:275–317

    Article  PubMed  CAS  Google Scholar 

  • Boys A, Marsden J, Strang J (2001) Understanding reasons for drug use amongst young people: a functional perspective. Health Educ Res 16:457–469

    Article  PubMed  CAS  Google Scholar 

  • Casey BJ, Jones RM (2010) Neurobiology of the adolescent brain and behavior: implications for substance use disorders. J Am Acad Child Adolesc Psychiatry 49:1189–1201

    PubMed Central  PubMed  CAS  Google Scholar 

  • Daberkow DP, Brown HD, Bunner KD, Kraniotis SA, Doellman MA, Ragozzino ME, Garris PA, Roitman MF (2013) Amphetamine paradoxically augments exocytotic dopamine release and phasic dopamine signals. J Neurosci 33:452–463

    Article  PubMed Central  PubMed  CAS  Google Scholar 

  • Eagle DM, Baunez C (2010) Is there an inhibitory-response-control system in the rat? Evidence from anatomical and pharmacological studies of behavioral inhibition. Neurosci Biobehav Rev 34:50–72

    Article  PubMed Central  PubMed  Google Scholar 

  • Ferguson SA, Frisby NB, Ali SF (2000) Acute effects of cocaine on play behaviour of rats. Behav Pharmacol 11:175–179

    Article  PubMed  CAS  Google Scholar 

  • Field EF, Pellis SM (1994) Differential effects of amphetamine on the attack and defense components of play fighting in rats. Physiol Behav 56:325–330

    Article  PubMed  CAS  Google Scholar 

  • File SE, Seth P (2003) A review of 25 years of the social interaction test. Eur J Pharmacol 463:35–53

    Article  PubMed  CAS  Google Scholar 

  • Heikkila RE, Orlansky H, Mytilineou C, Cohen G (1975) Amphetamine: evaluation of d- and l-isomers as releasing agents and uptake inhibitors for 3H-dopamine and 3H-norepinephrine in slices of rat neostriatum and cerebral cortex. J Pharmacol Exp Ther 194:47–56

    PubMed  CAS  Google Scholar 

  • Homberg JR, Schiepers OJG, Schoffelmeer ANM, Cuppen E, Vanderschuren LJMJ (2007) Acute and constitutive increases in central serotonin levels reduce social play behaviour in peri-adolescent rats. Psychopharmacology 195:175–182

    Article  PubMed Central  PubMed  CAS  Google Scholar 

  • Kelly PH, Seviour PW, Iversen SD (1975) Amphetamine and apomorphine responses in the rat following 6-OHDA lesions of the nucleus accumbens septi and corpus striatum. Brain Res 94:507–522

    Google Scholar 

  • Knutson B, Panksepp J, Pruitt D (1996) Effects of fluoxetine on play dominance in juvenile rats. Aggr Behav 22:297–307

    Article  CAS  Google Scholar 

  • Liu Y, Aragona BJ, Young KA, Dietz DM, Kabbaj M, Mazei-Robison M, Nestler EJ, Wang Z (2010) Nucleus accumbens dopamine mediates amphetamine-induced impairment of social bonding in a monogamous rodent species. Proc Natl Acad Sci U S A 107:1217–1222

    Article  PubMed Central  PubMed  Google Scholar 

  • Liu Y, Young KA, Curtis JT, Aragona BJ, Wang Z (2011) Social bonding decreases the rewarding properties of amphetamine through a dopamine D1 receptor-mediated mechanism. J Neurosci 31:7960–7966

    Article  PubMed Central  PubMed  CAS  Google Scholar 

  • Lyon M, Robbins TW (1975) The action of central nervous system stimulant drugs: A general theory concerning amphetamine effects. In: Essman WB, Valzelli L (eds) Current developments in psychopharmacology, vol 2. Spectrum, New York, pp 79–163

    Google Scholar 

  • Miczek KA, Yoshimura H (1982) Disruption of primate social behavior by d-amphetamine and cocaine: differential antagonism by antipsychotics. Psychopharmacology 76:163–171

    Article  PubMed  CAS  Google Scholar 

  • Nelson EE, Leibenluft E, McClure EB, Pine DS (2005) The social re-orientation of adolescence: a neuroscience perspective on the process and its relation to psychopathology. Psychol Med 35:163–174

    Article  PubMed  Google Scholar 

  • Newcomb MD, Bentler PM (1989) Substance use and abuse among children and teenagers. Am Psy 44:242–248

    Article  CAS  Google Scholar 

  • Niesink RJM, Van Ree JM (1989) Involvement of opioid and dopaminergic systems in isolation-induced pinning and social grooming of young rats. Neuropharmacology 28:411–418

    Article  PubMed  CAS  Google Scholar 

  • Panksepp J, Beatty WW (1980) Social deprivation and play in rats. Behav Neural Biol 30:197–206

    Article  PubMed  CAS  Google Scholar 

  • Panksepp J, Siviy S, Normansell L (1984) The psychobiology of play: theoretical and methodological perspectives. Neurosci Biobehav Rev 8:465–492

    Article  PubMed  CAS  Google Scholar 

  • Panksepp J, Jalowiec J, DeEskinazi FG, Bishop P (1985) Opiates and play dominance in juvenile rats. Behav Neurosci 99:441–453

    Article  PubMed  CAS  Google Scholar 

  • Pellis SM, McKenna MM (1992) Intrinsic and extrinsic influences on play fighting in rats: effects of dominance, partner’s playfulness, temperament and neonatal exposure to testosterone propionate. Behav Brain Res 50:135–145

    Article  PubMed  CAS  Google Scholar 

  • Pellis SM, Pellis VC (1987) Play-fighting differs from serious fighting in both target of attack and tactics of fighting in the laboratory rat Rattus norvegicus. Aggress Behav 13:227–242

    Article  Google Scholar 

  • Pellis SM, Pellis VC (2009) The playful brain: Venturing to the limits of neuroscience. Oneworld, Oxford

    Google Scholar 

  • Pellis SM, Field EF, Smith LK, Pellis VC (1997) Multiple differences in the play fighting of male and female rats. Implications for the causes and functions of play. Neurosci Biobehav Rev 21:105–120

    Article  PubMed  CAS  Google Scholar 

  • Pierce RC, Kumaresan V (2006) The mesolimbic dopamine system: the final common pathway for the reinforcing effect of drugs of abuse? Neurosci Biobehav Rev 30:215–238

    Article  PubMed  CAS  Google Scholar 

  • Poole TB, Fish J (1975) Investigation of playful behavior in Rattus norvegicus and Mus musculus (Mammalia). J Zool 175:61–71

    Article  Google Scholar 

  • Potegal M, Einon D (1989) Aggressive behaviors in adult rats deprived of playfighting experience as juveniles. Dev Psychobiol 22:159–172

    Article  PubMed  CAS  Google Scholar 

  • Rademacher DJ, Schuyler AL, Kruschel CK, Steinpreis RE (2002) Effects of cocaine and putative atypical antipsychotics on rat social behavior. An ethopharmacological study. Pharmacol Biochem Behav 73:769–778

    Article  PubMed  CAS  Google Scholar 

  • Ritz MC, Kuhar MJ (1989) Relationship between self-administration of amphetamine and monoamine receptors in brain: comparison with cocaine. J Pharmacol Exp Ther 248:1010–1017

    PubMed  CAS  Google Scholar 

  • Rothman RB, Baumann MH, Dersch CM, Romero DV, Rice KC, Carroll FI et al (2001) Amphetamine-type central nervous system stimulants release norepinephrine more potently than they release dopamine and serotonin. Synapse 39:32–41

    Article  PubMed  CAS  Google Scholar 

  • Sahakian BJ, Robbins TW, Morgan MJ, Iversen SD (1975) The effects of psychomotor stimulants on stereotypy and locomotor activity in socially-deprived and control rats. Brain Res 84:195–205

    Article  PubMed  CAS  Google Scholar 

  • Schiørring E (1979) Social isolation and other behavioral changes in groups of adult vervet monkeys (Cercopithecus aethiops) produced by low, nonchronic doses of d-amphetamine. Psychopharmacology 64:297–302

    Article  PubMed  Google Scholar 

  • Schramm-Sapyta NL, Walker QD, Caster JM, Levin ED, Kuhn CM (2009) Are adolescents more vulnerable to drug addiction than adults? Evidence from animal models. Psychopharmacology 206:1–21

    Article  PubMed Central  PubMed  CAS  Google Scholar 

  • Siviy SM, Panksepp J (1987) Sensory modulation of juvenile play in rats. Dev Psychobiol 20:39–55

    Article  PubMed  CAS  Google Scholar 

  • Siviy SM, Panksepp J (2011) In search of the neurobiological substrates for social playfulness in mammalian brains. Neurosci Biobehav Rev 35:1821–1830

    Article  PubMed  Google Scholar 

  • Spear LP (2000) The adolescent brain and age-related behavioral manifestations. Neurosci Biobehav Rev 24:417–463

    Article  PubMed  CAS  Google Scholar 

  • Sutton ME, Raskin LA (1986) A behavioral analysis of the effects of amphetamine on play and locomotor activity in the post-weaning rat. Pharmacol Biochem Behav 24:455–461

    Article  PubMed  CAS  Google Scholar 

  • Thor DH, Holloway WR Jr (1983) Play soliciting in juvenile male rats: effects of caffeine, amphetamine and methylphenidate. Pharmacol Biochem Behav 19:725–727

    Article  PubMed  CAS  Google Scholar 

  • Trezza V, Vanderschuren LJMJ (2008a) Cannabinoid and opioid modulation of social play behavior in adolescent rats: differential behavioral mechanisms. Eur Neuropsychopharmacol 18:519–530

    Article  PubMed Central  PubMed  CAS  Google Scholar 

  • Trezza V, Vanderschuren LJMJ (2008b) Bidirectional cannabinoid modulation of social behavior in adolescent rats. Psychopharmacology 197:217–227

    Article  PubMed  CAS  Google Scholar 

  • Trezza V, Baarendse PJJ, Vanderschuren LJMJ (2009) Prosocial effects of nicotine and ethanol in adolescent rats through partially dissociable neurobehavioral mechanisms. Neuropsychopharmacology 34:2560–2573

    Article  PubMed Central  PubMed  CAS  Google Scholar 

  • Trezza V, Baarendse PJJ, Vanderschuren LJMJ (2010) The pleasures of play: pharmacological insights into social reward mechanisms. Trends Pharmacol Sci 31:463–469

    Article  PubMed Central  PubMed  CAS  Google Scholar 

  • Trezza V, Campolongo P, Vanderschuren LJMJ (2011) Evaluating the rewarding nature of social interactions in laboratory animals. Dev Cogn Neurosci 1:444–458

    Article  PubMed  Google Scholar 

  • Van den Berg CL, Pijlman FT, Koning HA, Diergaarde L, Van Ree JM, Spruijt BM (1999) Isolation changes the incentive value of sucrose and social behaviour in juvenile and adult rats. Behav Brain Res 106:133–142

    Article  PubMed  Google Scholar 

  • Vanderschuren LJMJ (2010) How the brain makes play fun. Am J Play 2:315–337

    Google Scholar 

  • Vanderschuren LJMJ, Niesink RJM, Spruijt BM, Van Ree JM (1995a) Effects of morphine on different aspects of social play in juvenile rats. Psychopharmacology 117:225–231

    Article  PubMed  CAS  Google Scholar 

  • Vanderschuren LJMJ, Spruijt BM, Hol T, Niesink RJM, Van Ree JM (1995b) Sequential analysis of social play behavior in juvenile rats: effects of morphine. Behav Brain Res 72:89–95

    Article  PubMed  CAS  Google Scholar 

  • Vanderschuren LJMJ, Niesink RJM, Van Ree JM (1997) The neurobiology of social play behavior in rats. Neurosci Biobehav Rev 21:309–326

    Article  PubMed  CAS  Google Scholar 

  • Vanderschuren LJMJ, Trezza V, Griffioen-Roose S, Schiepers OJG, Van Leeuwen N, De Vries TJ et al (2008) Methylphenidate disrupts social play behavior in adolescent rats. Neuropsychopharmacology 33:2946–2956

    Article  PubMed Central  PubMed  CAS  Google Scholar 

  • Veeneman MMJ, Boleij H, Broekhoven MH, Snoeren EMS, Guitart Masip M, Cousijn J, Spooren W, Vanderschuren LJMJ (2011) Dissociable roles of mGlu5 and dopamine receptors in the rewarding and sensitizing properties of morphine and cocaine. Psychopharmacology 214:863–876

    Article  PubMed Central  PubMed  CAS  Google Scholar 

  • Veeneman MMJ, Broekhoven MH, Damsteegt R, Vanderschuren LJMJ (2012) Distinct contributions of dopamine in the dorsolateral striatum and nucleus accumbens shell to the reinforcing properties of cocaine. Neuropsychopharmacology 37:487–498

    Article  PubMed Central  PubMed  CAS  Google Scholar 

  • Venton BJ, Seipel AT, Phillips PEM, Wetsel WC, Gitler D, Greengard P, Augustine GJ, Wightman RM (2006) Cocaine increases dopamine release by mobilization of a synapsin-dependent reserve pool. J Neurosci 26:3206–3209

    Article  PubMed  CAS  Google Scholar 

  • White FJ, Joshi A, Koeltzow TE, Hu XT (1998) Dopamine receptor antagonists fail to prevent induction of cocaine sensitization. Neuropsychopharmacology 18:26–40

    Article  PubMed  CAS  Google Scholar 

  • Wise RA (2004) Dopamine, learning and motivation. Nat Rev Neurosci 5:483–494

    Article  PubMed  CAS  Google Scholar 

  • Wise RA, Bozarth MA (1987) A psychomotor stimulant theory of addiction. Psychol Rev 94:469–492

    Article  PubMed  CAS  Google Scholar 

  • Young KA, Gobrogge KL, Wang Z (2011) The role of mesocorticolimbic dopamine in regulating interactions between drugs of abuse and social behavior. Neurosci Biobehav Rev 35:498–515

    Article  PubMed Central  PubMed  CAS  Google Scholar 

Download references

Acknowledgments

Supported by the National Institute on Drug Abuse Grant R01 DA022628 (L.J.M.J.V.), Netherlands Organization for Scientific Research (NWO) Veni grant 91611052 (V.T.), and Marie Curie Career Reintegration Grant PCIG09-GA-2011-293589 (V.T.).

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Viviana Trezza or Louk J. M. J. Vanderschuren.

Additional information

Marijke Achterberg and Viviana Trezza contributed equally to the study.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Achterberg, E.J.M., Trezza, V., Siviy, S.M. et al. Amphetamine and cocaine suppress social play behavior in rats through distinct mechanisms. Psychopharmacology 231, 1503–1515 (2014). https://doi.org/10.1007/s00213-013-3272-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00213-013-3272-9

Keywords

Navigation