Skip to main content
Log in

Implication of NGF and endocannabinoid signaling in the mechanism of action of sesamol: a multi-target natural compound with therapeutic potential

  • Original Investigation
  • Published:
Psychopharmacology Aims and scope Submit manuscript

Abstract

Rationale

Sesamol, a natural compound with anti-inflammatory, antioxidant and neuroprotective properties, has shown promising antidepressant-like effects. However, its molecular target(s) have not been well defined, which merits further investigation.

Objectives

Based on the interaction between the neurotrophin and endocannabinoid (eCB) systems and their contribution to emotional reactivity and antidepressant action, we aimed to investigate the involvement of nerve growth factor (NGF) and eCB signalling in the mechanism of action of sesamol.

Methods

Following acute and 4-week intraperitoneal (i.p.) administration of sesamol (40, 80 and 100 mg/kg), the classical antidepressant amitriptyline (2.5, 5 and 10 mg/kg) or the benzodiazepine flurazepam (5, 10 and 20 mg/kg), brain regional levels of NGF and eCB contents were quantified in rats by Bio-Rad protein assay and isotope-dilution liquid chromatography/mass spectrometry, respectively. In the case of any significant change, the cannabinoid CB1 and CB2 receptor antagonists (AM251 and SR144528) were administered i.p. 30 min prior to the injection of sesamol, amitriptyline or flurazepam.

Results

Following the chronic treatment, sesamol, similar to amitriptyline, resulted in the sustained elevation of NGF and eCB contents in dose-dependent and brain region-specific fashion. Neither acute nor chronic treatment with flurazepam altered brain NGF or eCB contents. Pretreatment with 3 mg/kg AM251, but not SR144528, prevented the elevation of NGF protein levels. AM251 exerted no effect by itself.

Conclusions

Sesamol, similar to amitriptyline, is able to affect brain NGF and eCB signalling under the regulatory drive of the CB1 receptors.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Abalo R, Cabezos PA, Vera G, Fernandez-pujol R, Martin MI (2010) The cannabinoid antagonist SR144528 enhances the acute effect of WIN 55,212-2 on gastrointestinal motility in the rat. Neurogastroenterol Motil 22(6):694–e206

    Article  PubMed  CAS  Google Scholar 

  • Ahmad S, Yousuf S, Ishrat T et al (2005) Effect of dietary sesame oil as antioxidant on brain hippocampus of rat in focal cerebral ischemia. Life Sci 79:1921–1928

    Article  Google Scholar 

  • Alleva E, Petruzzi S, Cirulli F, Aloe L (1996) NGF regulatory role in stress and coping of rodents and humans. Pharmacol Biochem Behav 54(1):65–72

    Article  PubMed  CAS  Google Scholar 

  • Bambico FR, Duranti A, Tontini A, Tarzia G, Gobbi G (2009) Endocannabinoids in the treatment of mood disorders: evidence from animal models. Curr Pharm Des 15(14):1623–1646

    Article  PubMed  CAS  Google Scholar 

  • Banasr M, Valentine GW, Li XY, Gourley SL, Taylor JR, Duman RS (2007) Chronic unpredictable stress decreases cell proliferation in the cerebral cortex of the adult rat. Biol Psychiatry 62(5):496–504

    Article  PubMed  CAS  Google Scholar 

  • Berton O, Nestler EJ (2006) New approaches to antidepressant drug discovery: beyond monoamines. Nat Rev Neurosci 7:137–151

    Article  PubMed  CAS  Google Scholar 

  • Bradford MM (1976) A rapid and sensitive method for the quantitation of microgram quantities of protein utilizing the principle of protein-dye binding. Anal Biochem 72:248–254

    Article  PubMed  CAS  Google Scholar 

  • Castren E, Voikar V, Rantamaki T (2007) Role of neurotrophic factors in depression. Curr Opin Pharmacol 7(1):18–21

    Article  PubMed  CAS  Google Scholar 

  • Chadwick W, Mitchell N, Caroll J, Zhou Y, Park SS, Wang L et al (2011) Amitriptyline-mediated cognitive enhancement in aged 3×Tg Alzheimer's disease mice is associated with neurogenesis and neurotrophic activity. PLoS One 6:e21660

    Article  PubMed  CAS  Google Scholar 

  • Chandraserkaran VR, Hsu DZ, Liu MY (2009) The protective effect of sesamol against mitochondrial oxidative stress and hepatic injury in acetaminophen-overdosed rats. Shock 32(1):89–93

    Article  Google Scholar 

  • Cheng FC, Jinn TR, Hou RCW (2006) Neuroprotective effects of sesamin and sesamolin on gerbil brain in cerebral ischemia. Int J Biomed Sci 2:284–288

    PubMed  CAS  Google Scholar 

  • Cheng S, Ma M, Ma Y, Wang Z, Xu G, Liu X (2009) Combination therapy with intranasal NGF and electroacupuncture enhanced cell proliferation and survival in rats after stroke. Neurol Res 31(7):753–758

    Article  PubMed  Google Scholar 

  • Conner JM, Franks KM, Titterness AK, Russell K, Merrill DA, Christie BR et al (2009) NGF is essential for hippocampal plasticity and learning. J Neurosci 29(35):10883–10889

    Article  PubMed  CAS  Google Scholar 

  • de Lago E, Petrosino S, Valenti M, Morera E, Ortega-Gutierrez S, Fernandez-Ruiz J et al (2005) Effect of repeated systemic administration of selective inhibitors of endocannabinoid inactivation on rat brain endocannabinoid levels. Biochem Pharmacol 70:446–452

    Article  PubMed  Google Scholar 

  • di Matteo V, di Mascio M, di Giovanni G, Esposito E (2000) Acute administration of amitriptyline and mianserin increases dopamine release in the rat nucleus accumbens: possible involvement of serotonin 2C receptors. Psychopharmacology (Berl) 150:45–51

    Article  Google Scholar 

  • Dono LM, Currie PJ (2012) The cannabinoid receptor CB1 inverse agonist AM251 potentiates the anxiogenic activity of urocortin I in the basolateral amygdala. Neuropharmacology 62(1):192–199

    Article  PubMed  CAS  Google Scholar 

  • Ebendal T (1992) Function and evolution in the NGF family and its receptors. J Neurosci Res 32:461–470

    Article  PubMed  CAS  Google Scholar 

  • Ereshefsky L (2009) Drug-drug interactions with the use of psychotropic medications: questions and answers. CNS Spectr 14(8):1–8

    PubMed  Google Scholar 

  • Femenia T, Garcia-Gutierrez MS, Manzanares J (2010) CB1 receptor blockade decreases ethanol intake and associated neurochemical changes in fawn-hooded rats. Alcohol Clin Exp Res 34(1):131–141

    Article  PubMed  CAS  Google Scholar 

  • Flaherty CF, Becker HC, Checke S, Rowan GA, Grigson PS (1992) Effect of chlorpromazine and haloperidol on negative contrast. Pharmacol Biochem Behav 42(1):111–117

    Article  PubMed  CAS  Google Scholar 

  • Goodwin GM, De Souza RJ, Green AR (1987) Attenuation by electroconvulsive shock and antidepressant drugs of the 5-HT1A receptor-mediated hypothermia and serotonin syndrome produced by 8-OH-DPAT in the rat. Psychopharmacology (Berl) 91(4):500–505

    Article  CAS  Google Scholar 

  • Gwinn RP, Kondratyev A, Gale K (2002) Time-dependent increase in basic fibroblast growth factor protein in limbic regions following electroshock seizures. Neuroscience 114:403–409

    Article  PubMed  CAS  Google Scholar 

  • Hassanzadeh P (2010) The endocannabinoid system: critical for the neurotrophic action of psychotropic drugs. Biomed Rev 21:31–46

    CAS  Google Scholar 

  • Hassanzadeh P, Arbabi E (2012) Cannabinoid CB1 receptors mediate the gastroprotective effect of neurotensin. Iran J Basic Med Sci 15(3):803–810

    PubMed  CAS  Google Scholar 

  • Hassanzadeh P, Hassanzadeh A (2010) Effects of different psychotropic agents on the central nerve growth factor protein. Iran J Basic Med Sci 13(1):202–209

    CAS  Google Scholar 

  • Hassanzadeh P, Hassanzadeh A (2011a) Involvement of the neurotrophin and cannabinoid systems in the mechanisms of action of neurokinin receptor antagonists. Eur Neuropsychopharmacol 21:905–917

    Article  PubMed  CAS  Google Scholar 

  • Hassanzadeh P, Hassanzadeh A (2011b) The role of the endocannabinoids in suppression of the hypothalamic-pituitary-adrenal axis activity by doxepin. Iran J Basic Med Sci 14(5):414–421

    PubMed  CAS  Google Scholar 

  • Hassanzadeh P, Rahimpour S (2011) The cannabinergic system is implicated in the upregulation of central NGF protein by psychotropic drugs. Psychopharmacology 215:129–141

    Article  PubMed  CAS  Google Scholar 

  • Hellweg R, Hock C, Hartung HD (1989) An improved rapid and highly sensitive enzyme immunoassay for nerve growth factor. Technique J Meth Cell Mol Biol 1:43–49

    Google Scholar 

  • Hellweg R, Thomas H, Arnswald A, von Richthofen S, Kay S, Fink H et al (2001) Serotonergic lesion of median raphe nucleus alters nerve growth factor content and vulnerability of cholinergic septohippocampal neurons in rat. Brain Res 907:100–108

    Article  PubMed  CAS  Google Scholar 

  • Hellweg R, Lang UE, Nagel M, Baumgartner A (2002) Subchronic treatment with lithium increases nerve growth factor content in distinct brain regions of adult rats. Mol Psychiatry 7:604–608

    Article  PubMed  CAS  Google Scholar 

  • Hoener MC, Hewitt E, Conner JM, Costello JW, Varon S (1996) Nerve growth factor (NGF) content in adult rat brain tissues is several-fold higher than generally reported and is largely associated with sedimentable fractions. Brain Res 728:47–56

    Article  PubMed  CAS  Google Scholar 

  • Hsu DZ, Liu MY (2002) Sesame oil attenuates multiple organ failure and increases survival rate during endotoxemia in rats. Crit Care Med 30:1859–1862

    Article  PubMed  Google Scholar 

  • Huang EJ, Reichardt LF (2001) Neurotrophins: roles in neuronal development and function. Ann Rev Neurosci 24:677–736

    Article  PubMed  CAS  Google Scholar 

  • Jang SW, Liu X, Chan CB, Weinshenker D, Hall RA, Xiao G et al (2009) The antidepressant amitriptyline is a TrkA and TrkB receptor agonist that promotes TrkA/TrkB heterodimerization and has potent neurotrophic activity. Chem Biol 16:644–656

    Article  PubMed  CAS  Google Scholar 

  • Jeng KC, Hou RC, Wang JC et al (2005) Sesamin inhibits lipopolysaccharide-induced cytokine production by suppression of p38 mitogen-activated protein kinase and nuclear factor-kappaB. Immunol Lett 97:101–106

    Article  PubMed  CAS  Google Scholar 

  • Khaspekov LG, Brenz Verca MS, Frumkina LE, Hermann H, Marsicano G, Lutz B (2004) Involvement of brain-derived neurotrophic factor in cannabinoid receptor-dependent protection against excitotoxicity. Eur J Neurosci 19:1691–1698

    Article  PubMed  Google Scholar 

  • Koga D, Santa T, Fukushima T, Homma H, Imai K (1997) Liquid chromatographic-atmospheric pressure chemical ionization mass spectrometric determination of anandamide and its analogues in rat brain and peripheral tissues. J Chromatogr B: Biomed Sci Appl 690:7–13

    Article  CAS  Google Scholar 

  • Kumar P, Kalonia H, Kumar A (2010) Protective effect of sesamol against 3-nitropropionic acid-induced cognitive dysfunction and altered glutathione redox balance in rats. Basic Clin Pharmacol Toxicol 107(1):577–582

    Article  PubMed  CAS  Google Scholar 

  • Kumar B, Kuhad A, Chopra K (2011) Neuropharmacological effect of sesamol in unpredictable chronic mild stress model of depression: behavioral and biochemical evidences. Psychopharmacology 214(4):819–828

    Article  PubMed  CAS  Google Scholar 

  • Lad SP, Neet KE, Mufson EJ (2003) Nerve growth factor: structure, function and therapeutic implications for Alzheimer's disease. Curr Drug Targets CNS Neurol Disord 2:315–334

    Article  PubMed  CAS  Google Scholar 

  • Marsicano G, Lutz B (2006) Neuromodulatory functions of the endocannabinoid system. J Endocrinol Investig 29(3):27–46

    CAS  Google Scholar 

  • Miwa T, Moriizumi T, Horikawa I, Uramoto N, Ishimaru T, Nishimura T et al (2002) Role of nerve growth factor in the olfactory system. Microsc Res Tech 58(3):197–203

    Article  PubMed  CAS  Google Scholar 

  • Moises HC, Womble MD, Washburn MS, Williams LR (1995) Nerve growth factor facilitates cholinergic neurotransmission between nucleus basalis and the amygdala in rat: an electrophysiological analysis. J Neurosci 15(12):8131–8142

    PubMed  CAS  Google Scholar 

  • Nemeroff CB (2007) The burden of severe depression: a review of diagnostic challenges and treatment alternatives. J Psychiatr Res 41:189–206

    Article  PubMed  Google Scholar 

  • Patel S, Rademacher DJ, Hillard CJ (2003) Differential regulation of the endocannabinoids anandamide and 2-arachidonylglycerol within the limbic forebrain by dopamine receptor activity. J Pharmacol Exp Ther 306:880–888

    Article  PubMed  CAS  Google Scholar 

  • Paxinos G, Watson C (1997) The rat brain in stereotaxic coordinates. Academic, San Diego

    Google Scholar 

  • Periasamy S, Mo FE, Chen SY, Chang CC, Liu MY (2011) Sesamol attenuates isoproterenol-induced acute myocardial infarction via inhibition of matrix metalloproteinase-2 and -9 expression in rats. Cell Physiol Biochem 27(3–4):273–280

    Article  PubMed  CAS  Google Scholar 

  • Riolo SA, Nguyen TA, Greden JF, King CA (2005) Prevalence of depression by race/ethnicity: findings from the national health and nutrition examination survey III. Am J Public Health 95(6):998–1000

    Article  PubMed  Google Scholar 

  • Rodríguez-Gaztelumendi A, Rojo ML, Pazos A, Díaz A (2009) Altered CB1 receptor-signaling in prefrontal cortex from an animal model of depression is reversed by chronic fluoxetine. J Neurochem 108(6):1423–1433

    Article  PubMed  Google Scholar 

  • Shaltiel G, Chen G, Manji HK (2007) Neurotrophic signalling cascades in the pathophysiology and treatment of bipolar disorder. Curr Opin Pharmacol 7:22–26

    Article  PubMed  CAS  Google Scholar 

  • Sharma S, Kaur IP (2005) Development and evaluation of sesamol as an antiaging agent. Int J Dermatol 45:200–208

    Article  Google Scholar 

  • Tanis KQ, Duman RS (2007) Intracellular signaling pathways pave roads to recovery for mood disorders. Ann Med 39:531–544

    Article  PubMed  CAS  Google Scholar 

  • van der Watt G, Laugharne J, Janca A (2008) Complementary and alternative medicine in the treatment of anxiety and depression. Curr Opin Psychiatry 21(1):37–42

    Article  PubMed  Google Scholar 

  • Vinay P, KhanMohammad M, Alvin T, Sahebarao PM (2004) Differential effects of typical and atypical antipsychotics on nerve growth factor and choline acetyltransferase expression in the cortex and nucleus basalis of rats. J Psychiat Res 38(5):521–529

    Article  Google Scholar 

  • Viveros MP, Marco EM, File SE (2005) Endocannabinoid system and stress and anxiety responses. Pharmacol Biochem Behav 81(2):331–342

    Article  PubMed  CAS  Google Scholar 

  • Viveros MP, Marco EM, Liorente R, Lopez-Gallardo M (2007) Endocannabinoid system and synaptic plasticity: implication for emotional response. Neural Plast 2007:52908

    Article  PubMed  Google Scholar 

  • Williams EJ, Walsh FS, Doherty P (2003) The FGF receptor uses the endocannabinoid signaling system to couple to an axonal growth response. J Cell Biol 160:481–486

    Article  PubMed  CAS  Google Scholar 

  • Winkler J, Ramirez GA, Thal LJ, Waite JJ (2000) Nerve growth factor (NGF) augments cortical and hippocampal cholinergic functioning after p75NGF receptor-mediated deafferentation but impairs inhibitory avoidance and induces fear-related behaviors. J Neurosci 20(2):834–844

    PubMed  CAS  Google Scholar 

  • Yanpallewar SU, Fernandes K, Marathe SV, Vadodaria KC, Jhaveri D, Rommelfanger K et al (2010) α2-Adrenoceptor blockade accelerates the neurogenic, neurotrophic, and behavioral effects of chronic antidepressant treatment. J Neurosci 30(3):1096–1109

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgments

This work was supported by a grant (Sh-596) from Shahid Beheshti University of Medical Sciences. The authors thank Ali Mahdavi, Department of Immunology, Tarbiat Modarres University, Tehran, for technical assistance.

Conflict of interest

The authors declare that, except the income received from Shahid Beheshti University of Medical Sciences, no financial support or compensation has been received from any individual or corporate entity. There are no personal financial holdings that could be perceived as consulting a potential conflict of interest.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Parichehr Hassanzadeh.

Electronic supplementary material

Below is the link to the electronic supplementary material.

ESM 1

(DOC 39 kb)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Hassanzadeh, P., Hassanzadeh, A. Implication of NGF and endocannabinoid signaling in the mechanism of action of sesamol: a multi-target natural compound with therapeutic potential. Psychopharmacology 229, 571–578 (2013). https://doi.org/10.1007/s00213-013-3111-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00213-013-3111-z

Keywords

Navigation