Skip to main content
Log in

The cannabinergic system is implicated in the upregulation of central NGF protein by psychotropic drugs

  • Original Investigation
  • Published:
Psychopharmacology Aims and scope Submit manuscript

Abstract

Rationale

Studies on the regulation of nerve growth factor (NGF) levels by psychotropics are limited in scope and the mechanism(s) remain elusive which merit further elucidation.

Objectives

We aimed to perform a more comprehensive investigation on the possible effects of pharmacologically heterogeneous groups of psychotropic drugs on NGF contents in the brain regions involved in the modulation of emotions. As a mechanistic approach, we looked at the role of the cannabinergic system which is linked to depression and/or antidepressant effect and appears to interact with neurotrophin signaling.

Methods

Following psychotropic treatment, NGF or endocannabinoid (eCB) contents were quantified by Bio-Rad protein assay and isotope-dilution liquid chromatography/mass spectrometry, respectively. In case of any significant change, the effects of pretreatment with the CB1 receptor neutral antagonist AM4113 were investigated.

Results

Single injection of nortriptyline, isocarboxazid, citalopram, diazepam, risperidone (2.5, 5, and 10 mg/kg, each), and fluphenazine (0.25, 0.5, and 1 mg/kg) into rats did not alter NGF or eCB contents. Following 4-week treatment, all drugs except diazepam elevated NGF or eCB levels in dose-dependent and brain region-specific fashion. Pretreatment with the highest dose of AM4113 (5.6 mg/kg) prevented psychotropic-induced NGF or eCB elevation. AM4113 had no effect by itself.

Conclusions

The cannabinergic system is implicated in the mechanisms of action of certain psychotropic drugs including the upregulation of brain NGF levels. This provides a better understanding of the pathophysiological mechanisms underlying neuropsychiatric disorders, leading to novel drug design.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  • Adachi M, Barrot M, Autry AE, Theobald D, Monteggia LM (2008) Selective loss of brain-derived neurotrophic factor in the dentate gyrus attenuates antidepressant efficacy. Biol Psychiatry 63:642–649

    Article  PubMed  CAS  Google Scholar 

  • Alleva E, Petruzzi S, Cirulli F, Aloe L (1996) NGF regulatory role in stress and coping of rodents and humans. Pharmacol Biochem Behav 54(1):65–72

    Article  PubMed  CAS  Google Scholar 

  • Alvin V, Terry J, Debra A, Warner GS, Hohnadel EJ, Middlemore ML et al (2007) Protracted effects of chronic oral haloperidol and risperidone on nerve growth factor, cholinergic neurons, and spatial reference learning in rats. Neuroscience 150(2):413–424

    Article  Google Scholar 

  • Angelucci F, Aloe L, Gruber SHM, Fiore M, Mathé AA (2000) Chronic antipsychotic treatment selectively alters nerve growth factor and neuropeptide Y immunoreactivity and the distribution of choline acetyl transferase in rat brain regions. Int J Neuropsychopharmacol 3:13–25

    Article  PubMed  CAS  Google Scholar 

  • Angelucci F, Ricci V, Spalletta G, Pomponi M, Tonioni F, Caltagirone C et al (2008) Reduced serum concentrations of nerve growth factor, but not brain-derived neurotrophic factor, in chronic cannabis abusers. Eur Neuropsychopharmacol 18(12):882–887

    Article  PubMed  CAS  Google Scholar 

  • Aso E, Ozaita A, Valdizań EM, Ledent C, Pazos A, Maldonado R (2008) BDNF impairment in the hippocampus is related to enhanced despair behavior in CB1 knockout mice. J Neurochem 105:565–572

    Article  PubMed  CAS  Google Scholar 

  • Bambico FR, Duranti A, Tontini A, Tarzia G, Gobbi G (2009) Endocannabinoids in the treatment of mood disorders: evidence from animal models. Curr Pharm Des 15(14):1623–1646

    Article  PubMed  CAS  Google Scholar 

  • Banasr M, Valentine GW, Li XY, Gourley SL, Taylor JR, Duman RS (2007) Chronic unpredictable stress decreases cell proliferation in the cerebral cortex of the adult rat. Biol Psychiatry 62(5):496–504

    Article  PubMed  CAS  Google Scholar 

  • Bergman J, Delatte MS, Paronis CA, Vemuri K, Pandarinathan P, Thakur GA (2008) Some effects of CB1 antagonists with inverse agonist and neutral biochemical properties. Physiol Behav 93(4–5):666–670

    Article  PubMed  CAS  Google Scholar 

  • Bisogno T, Berrendero F, Ambrosino G, Cebeira M, Ramos AJ, Fernandez-Ruiz JJ et al (1999) Brain regional distribution of endocannabinoids: implications for their biosynthesis and biological function. Biochem Biophys Res Commun 256:377–380

    Article  PubMed  CAS  Google Scholar 

  • Bradford MM (1976) A rapid and sensitive method for the quantitation of microgram quantities of protein utilizing the principle of protein-dye binding. Anal Biochem 72:248–254

    Article  PubMed  CAS  Google Scholar 

  • Browne SE, Lin L, Mattsson A, Georgievska B, Isacson O (2001) Selective antibody-induced cholinergic cell and synapse loss produce sustained hippocampal and cortical hypometabolism with correlated cognitive deficits. Exp Neurol 170:36–47

    Article  PubMed  CAS  Google Scholar 

  • Chambers AP, Vemuri VK, Peng Y, Wood JT, Olszewska T, Pittman QJ et al (2007) A neutral CB1 receptor antagonist reduces weight gain in rat. Am J Physiol Regul Integr Comp Physiol 293:R2185–R2193

    Article  PubMed  CAS  Google Scholar 

  • Comelli F, Bettoni I, Colombo A, Fumagalli P, Giagnoni G, Costa B (2010) Rimonabant, a cannabinoid CB1 receptor antagonist, attenuates mechanical allodynia and counteracts oxidative stress and nerve growth factor deficit in diabetic mice. Eur J Pharmacol 637:62–69

    Article  PubMed  CAS  Google Scholar 

  • Conner JM, Franks KM, Titterness AK, Russell K, Merrill DA, Christie BR et al (2009) NGF is essential for hippocampal plasticity and learning. J Neurosci 29(35):10883–10889

    Article  PubMed  CAS  Google Scholar 

  • De Lago E, Petrosino S, Valenti M, Morera E, Ortega-Gutierrez S, Fernandez-Ruiz J et al (2005) Effect of repeated systemic administration of selective inhibitors of endocannabinoid inactivation on rat brain endocannabinoid levels. Biochem Pharmacol 70:446–452

    Article  PubMed  Google Scholar 

  • Dias BG, Banerjee SB, Duman RS, Vaidya VA (2003) Differential regulation of brain derived neurotrophic factor transcripts by antidepressant treatments in the adult rat brain. Neuropharmacology 45:553–563

    Article  PubMed  CAS  Google Scholar 

  • Ebendal T (1992) Function and evolution in the NGF family and its receptors. J Neurosci Res 32:461–470

    Article  PubMed  CAS  Google Scholar 

  • Evans RM, Scott RH, Ross RA (2007) Chronic exposure of sensory neurones to increased levels of nerve growth factor modulates CB1/TRPV1 receptor crosstalk. Br J Pharmacol 152:404–413

    Article  PubMed  CAS  Google Scholar 

  • Felder CC, Nielsen A, Briley EM, Palkovits M, Priller J, Axelrod J et al (1996) Isolation and measurement of the endogenous cannabinoid receptor agonist, anandamide, in brain and peripheral tissues of human and rat. FEBS Lett 393:231–235

    Article  PubMed  CAS  Google Scholar 

  • Gonzalez S, Cascio MG, Fernandez-Ruiz J, Fezza F, Di Marzo V, Ramos JA (2002) Changes in endocannabinoid contents in the brain of rats chronically exposed to nicotine, ethanol or cocaine. Brain Res 954:73–81

    Article  PubMed  CAS  Google Scholar 

  • Guest PC, Knowles MR, Molon-Noblot S, Salim S, Smith D, Murray F et al (2004) Mechanisms of action of the antidepressants fluoxetine and the substance P antagonist L-000760735 are associated with altered neurofilaments and synaptic remodeling. Brain Res 1002(1–2):1–10

    Article  PubMed  CAS  Google Scholar 

  • Gwinn RP, Kondratyev A, Gale K (2002) Time-dependent increase in basic fibroblast growth factor protein in limbic regions following electroshock seizures. Neuroscience 114(2):403–409

    Article  PubMed  CAS  Google Scholar 

  • Hellweg R, Hock C, Hartung HD (1989) An improved rapid and highly sensitive enzyme immunoassay for nerve growth factor. Technique J Meth Cell Mol Biol 1:43–49

    Google Scholar 

  • Hellweg R, Thomas H, Arnswald A, von Richthofen S, Kay S, Fink H et al (2001) Serotonergic lesion of median raphe nucleus alters nerve growth factor content and vulnerability of cholinergic septohippocampal neurons in rat. Brain Res 907:100–108

    Article  PubMed  CAS  Google Scholar 

  • Hellweg R, Lang UE, Nagel M, Baumgartner A (2002) Subchronic treatment with lithium increases nerve growth factor content in distinct brain regions of adult rats. Mol Psychiatry 7(6):604–608

    Article  PubMed  CAS  Google Scholar 

  • Hill MN, Gorzalka BB (2005) Is there a role for the endocannabinoid system in the aetiology and treatment of melancholic depression? Behav Pharmacol 16:333–352

    Article  PubMed  CAS  Google Scholar 

  • Hill MN, Ho WSV, Sinopoli KJ, Viau V, Hillard CJ, Gorzalka BB (2006) Involvement of the endocannabinoid system in the ability of long-term tricyclic antidepressant treatment to suppress stress-induced activation of the hypothalamic-pituitary-adrenal axis. Neuropsychopharmacology 31:2591–2599

    Article  PubMed  CAS  Google Scholar 

  • Hill MN, Ho WSV, Hillard CJ, Gorzalka BB (2008a) Differential effects of antidepressants tranylcypromine and fluoxetine on limbic cannabinoid receptor binding and endocannabinoid contents. J Neural Transm 115:1673–1679

    Article  PubMed  CAS  Google Scholar 

  • Hill MN, Carrier EJ, McLaughlin RJ, Morrish AC, Meier SE, Hillard CJ et al (2008b) Regional alterations in the endocannabinoid system in an animal model of depression: effects of concurrent antidepressant treatment. J Neurochem 106:2322–2336

    Article  PubMed  CAS  Google Scholar 

  • Hoener MC, Hewitt E, Conner JM, Costello JW, Varon S (1996) Nerve growth factor (NGF) content in adult rat brain tissues is several-fold higher than generally reported and is largely associated with sedimentable fractions. Brain Res 728:47–56

    Article  PubMed  CAS  Google Scholar 

  • Huang M, Ichiwaka J, Li Z, Dai J, Meltzer HY (2006) Augmentation by citalopram of risperidone-induced monoamine release in rat prefrontal cortex. Psychopharmacology 185(3):274–281

    Article  PubMed  CAS  Google Scholar 

  • Koga D, Santa T, Fukushima T, Homma H, Imai K (1997) Liquid chromatographic-atmospheric pressure chemical ionization mass spectrometric determination of anandamide and its analogues in rat brain and peripheral tissues. J Chromatogr B Biomed Sci Appl 690:7–13

    Article  PubMed  CAS  Google Scholar 

  • Lad SP, Neet KE, Mufson EJ (2003) Nerve growth factor: structure, function and therapeutic implications for Alzheimer’s disease. Curr Drug Targets CNS Neurol Disord 2:315–334

    Article  PubMed  CAS  Google Scholar 

  • Malberg JE, Schechter LE (2005) Increasing hippocampal neurogenesis: a novel mechanism for antidepressant drugs. Curr Pharm Des 11(2):145–155

    Article  PubMed  CAS  Google Scholar 

  • Mangieri RA, Piomelli D (2007) Enhancement of endocannabinod signaling and the pharmacotherapy of depression. Pharmacol Res 56:360–366

    Article  PubMed  CAS  Google Scholar 

  • Marsicano G, Lutz B (2006) Neuromodulatory functions of the endocannabinoid system. J Endocrinol Investig 29(3):27–46

    CAS  Google Scholar 

  • McEwen BS (2007) Physiology and neurobiology of stress and adaptation: central role of the brain. Physiol Rev 87:873–904

    Article  PubMed  Google Scholar 

  • Meltzer HY, McGurk SR (1999) The effects of clozapine, risperidone, and olanzapine on cognitive function in schizophrenia. Schizophr Bull 25:233–255

    PubMed  CAS  Google Scholar 

  • Nemeroff CB (2005) Use of atypical antipsychotics in refractory depression and anxiety. J Clin Psychiatry 66(8):13–21

    PubMed  CAS  Google Scholar 

  • Pacher P, Kohegyi E, Kecskemeti V, Furs S (2001) Current trends in the development of new antidepressants. Curr Med Chem 8(2):89–100

    PubMed  CAS  Google Scholar 

  • Panikashvili D, Simeonidou C, Ben-Shabat S, Hanus L, Breuer A, Mechoulam R et al (2001) An endogenous cannabinoid (2-AG) is neuroprotective after brain injury. Nature 413:527–531

    Article  PubMed  CAS  Google Scholar 

  • Parikh V, Evans DR, Khan MM, Mahadik SP (2003) Nerve growth factor in never-medicated first-episode psychotic and medicated chronic schizophrenic patients: possible implications for treatment outcome. Schizophr Res 60(2–3):117–123

    Article  PubMed  Google Scholar 

  • Patel S, Rademacher DJ, Hillard CJ (2003) Differential regulation of the endocannabinoids anandamide and 2-arachidonylglycerol within the limbic forebrain by dopamine receptor activity. J Pharmacol Exp Ther 306:880–888

    Article  PubMed  CAS  Google Scholar 

  • Patel S, Carrier EJ, Ho WS, Rademacher DJ, Cunningham S, Reddy DS et al (2005) The postmortal accumulation of brain N-arachidonylethanolamine (anandamide) is dependent upon fatty acid amide hydrolase activity. J Lipid Res 46:342–349

    Article  PubMed  CAS  Google Scholar 

  • Paxinos G, Watson C (1986) The rat brain in stereotaxic coordinates, 2nd edn. Academic Press, New York

  • Pillai A, Terry AV Jr, Mahadik SP (2006) Differential effects of long-term treatment with typical and atypical antipsychotics on NGF and BDNF levels in rat striatum and hippocampus. Schizophr Res 82:95–106

    Article  PubMed  Google Scholar 

  • Rodríguez-Gaztelumendi A, Rojo ML, Pazos A, Díaz A (2009) Altered CB1 receptor-signaling in prefrontal cortex from an animal model of depression is reversed by chronic fluoxetine. J Neurochem 108(6):1423–1433

    Article  PubMed  Google Scholar 

  • Schmidt HD, Duman RS (2007) The role of neurotrophic factors in adult hippocampal neurogenesis, antidepressant treatments and animal models of depressive-like behaviour. Behav Pharmacol 18:391–418

    Article  PubMed  CAS  Google Scholar 

  • Sergi MJ, Green MF, Widmark C, Reist C, Erhart S, Braff DL et al (2007) Social cognition and neurocognition: effects of risperidone, olanzapine, and haloperidol. Am J Psychiatry 164:1585–1592

    Article  PubMed  Google Scholar 

  • Serra G, Fratta W (2007) A possible role for the endocannabinoid system in the neurobiology of depression. Clin Pract Epidemol Ment Health 3:25

    Article  Google Scholar 

  • Shelton RC (2006) Treatment-resistant depression: Are atypical antipsychotics effective and safe enough? Current Psychiatry 5(10):31–44

    Google Scholar 

  • Sink KS, McLaughlin PJ, Wood JA, Brown C, Fan P, Vemuri VK et al (2008) The novel cannabinoid CB(1) receptor neutral antagonist AM4113 suppresses food intake and food-reinforced behavior but does not induce signs of nausea in rats. Neuropsychopharmacology 33:946–955

    Article  PubMed  CAS  Google Scholar 

  • Thase ME, Corya SA, Osuntokun O, Case M, Henley DB, Sanger TM et al (2007) A randomized, double-blind comparison of olanzapine/fluoxetine combination, olanzapine, and fluoxetine in treatment-resistant major depressive disorder. J Clin Psychiatry 68(2):224–236

    Article  PubMed  CAS  Google Scholar 

  • Vinay P, KhanMohammad M, Alvin T, Sahebarao PM (2004) Differential effects of typical and atypical antipsychotics on nerve growth factor and choline acetyltransferase expression in the cortex and nucleus basalis of rats. J Psychiat Res 38(5):521–529

    Article  Google Scholar 

  • Viveros MP, Marco EM, File SE (2005) Endocannabinoid system and stress and anxiety responses. Pharmacol Biochem Behav 81(2):331–342

    Article  PubMed  CAS  Google Scholar 

  • Viveros MP, Marco EM, Liorente R, Lopez-Gallardo M (2007) Endocannabinoid system and synaptic plasticity: implication for emotional response. Neural Plast 2007:52908

    Article  PubMed  Google Scholar 

  • Williams EJ, Walsh FS, Doherty P (2003) The FGF receptor uses the endocannabinoid signaling system to couple to an axonal growth response. J Cell Biol 160(4):481–486

    Article  PubMed  CAS  Google Scholar 

  • Winkler J, Ramirez GA, Thal LJ, Waite JJ (2000) Nerve growth factor (NGF) augments cortical and hippocampal cholinergic functioning after p75NGF receptor-mediated deafferentation but impairs inhibitory avoidance and induces fear-related behaviors. J Neurosci 20(2):834–844

    PubMed  CAS  Google Scholar 

  • Yulug B, Yildiz A, Güzel O, Kilic E, Schäbitz WR, Kilic E (2006) Risperidone attenuates brain damage after focal cerebral ischemia in vivo. Brain Res Bull 69(6):656–659

    Article  PubMed  CAS  Google Scholar 

  • Zhuang SY, Bridges D, Grigorenko E, McCloud S, Boon A, Hampson RE et al (2005) Cannabinoids produce neuroprotection by reducing intracellular calcium release from ryanodine-sensitive stores. Neuropharmacology 48:1086–1096

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgments

The experiments comply with the current laws of Iran. This work was funded in part by a grant (A-1142) from AJA University of Medical Sciences. The authors thank Dr. Ali Mahdavi, Department of Immunology, Tarbiat Modarres University, Tehran; Amir Farahbakhsh, Department of Molecular Biology, Azad University, Parand; and Fatemeh Eini, AJA University of Medical Sciences, for their technical assistance. The authors greatly thank Professors Richard A. Lockshin (St. John’s University, USA), George Chaldakov (Medical University of Varna, Bulgaria), Andrew Greenshaw (University of Alberta, Canada), and Luigi Aloe (Institute of Neurobiology and Molecular Medicine, Rome, Italy) for their helpful comments and encouragement.

Disclosure/Conflicts of interest

The authors declare that, except for the income received from AJA University of Medical Sciences, no financial support or compensation has been received from any individual or corporate entity. There are no personal financial holdings that could be perceived as consulting a potential conflict of interest.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Parichehr Hassanzadeh.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Hassanzadeh, P., Rahimpour, S. The cannabinergic system is implicated in the upregulation of central NGF protein by psychotropic drugs. Psychopharmacology 215, 129–141 (2011). https://doi.org/10.1007/s00213-010-2120-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00213-010-2120-4

Keywords

Navigation