Skip to main content

Advertisement

Log in

Methiopropamine and its acute behavioral effects in mice: is there a gray zone in new psychoactive substances users?

  • Original Article
  • Published:
International Journal of Legal Medicine Aims and scope Submit manuscript

Abstract

Methiopropamine is a structural analog of methamphetamine that is categorized as a novel psychoactive substance. It primarily acts as a norepinephrine–dopamine reuptake inhibitor and, secondarily, as a serotonin reuptake inhibitor. In humans, methiopropamine induces stimulation and alertness and increases focus and energy. However, significant side effects are reported, such as tachycardia, anxiety, panic attacks, perspiration, headache, and difficulty in breathing. To date, little data is available regarding its pharmacodynamic effects, thereby we aimed to investigate the acute in vivo effects induced by this drug on sensorimotor responses, body temperature, pain thresholds, motor activity, and cardiovascular and respiratory systems in CD-1 male mice. We selected a range of doses that correspond to the whole range of human reported use, in order to evaluate the threshold of adverse effects presentation. This study demonstrates that methiopropamine acts as a dopaminergic and noradrenergic stimulating drug and that the highest doses (10–30 mg/kg) impair the visual placing response, facilitate the acoustic and tactile response, induce hypothermia, increase mechanical and thermal analgesia, stimulate locomotor activity, induce motor stereotypies, and strongly affected cardiovascular and respiratory parameters, increasing heart rate, breath rate, and blood pressure but reducing oxygen saturation. On the contrary, lower doses do not show any of those effects. We hypothesize that there is a range of doses that do enhance performance but do not seem hazardous to users: this gap could induce the perception of safety and increase the abuser population.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

Abbreviations

NPS:

Novel psychoactive substances

MPA:

Methiopropamine

METH:

Methamphetamine

NE:

Norepinephrine

DA:

Dopamine

5-HT:

Serotonin

LC:

Locus coeruleus

CAP:

Compound action potential

WDT:

Workplace drug testing

References

  1. Schifano F, Napoletano F, Arillotta D, Zangani C, Gilgar L, Guirguis A, Corkery JM, Vento A (2019, 2019) The clinical challenges of synthetic cathinones. Br J Clin Pharmacol. https://doi.org/10.1111/bcp.14132 [Epub ahead of print] PubMed PMID: 31674690

  2. Lehmann S, Kieliba T, Thevis M, Rothschild MA, Mercer-Chalmers-Bender K (2019, 2019) Fatalities associated with NPS stimulants in the Greater Cologne area. Int J Legal Med. https://doi.org/10.1007/s00414-019-02193-z [Epub ahead of print] PubMed PMID: 31735981

  3. Iwersen-Bergmann S, Lehmann S, Heinemann A, Schröder C, Müller A, Jungen H, Andresen-Streichert H, Pueschel K, Vidal C, Mercer-Chalmers-Bender K (2019) Mass poisoning with NPS: 2C-E and Bromo-DragonFly. Int J Legal Med 133(1):123–129. https://doi.org/10.1007/s00414-018-1882-9 Erratum in: Int J Legal Med. 2018 Jul 21; PubMed PMID: 29959557

    Article  CAS  PubMed  Google Scholar 

  4. Richeval C, Gaulier JM, Romeuf L, Allorge D, Gaillard Y (2019) Case report: relevance of metabolite identification to detect new synthetic opioid intoxications illustrated by U-47700. Int J Legal Med 133(1):133–142. https://doi.org/10.1007/s00414-018-1969-3 PubMed PMID: 30443678

    Article  PubMed  Google Scholar 

  5. Kintz P, Ameline A, Walch A, Farrugia A, Raul JS (2019) Murdered while under the influence of 3-MeO-PCP. Int J Legal Med 133(2):475–478. https://doi.org/10.1007/s00414-018-1901-x PubMed PMID: 30039274

    Article  PubMed  Google Scholar 

  6. New psychoactive substances in Europe. An update from the EU early warning system. European Monitoring Centre for Drugs and Drugs Addiction. March 2015

  7. Barceló B, Gomila I, Rotolo MC, Marchei E, Kyriakou C, Pichini S, Roset C, Elorza MÁ, Busardò FP (2017) Intoxication caused by new psychostimulants: analytical methods to disclose acute and chronic use of benzofurans and ethylphenidate. Int J Legal Med 131(6):1543–1553. https://doi.org/10.1007/s00414-017-1648-9 PubMed PMID: 28710651

    Article  PubMed  Google Scholar 

  8. Maas A, Wippich C, Madea B, Hess C (2015) Driving under the influence of synthetic phenethylamines: a case series. Int J Legal Med 129(5):997–1003. https://doi.org/10.1007/s00414-015-1150-1 PubMed PMID: 25618172

    Article  PubMed  Google Scholar 

  9. Hondebrink L, Nugteren-van Lonkhuyzen JJ, Rietjens SJ, Brunt TM, Venhuis B, Soerdjbalie-Maikoe V, Smink BE, van Riel AJHP, de Vries I (2018) Fatalities, cerebral hemorrhage, and severe cardiovascular toxicity after exposure to the new psychoactive substance 4-fluoroamphetamine: a prospective cohort study. Ann Emerg Med 71(3):294–305. https://doi.org/10.1016/j.annemergmed.2017.07.482 PubMed PMID: 28969928

    Article  PubMed  Google Scholar 

  10. Blicke FF, Burckhalter JH (1942) α-Thienylaminoalkanes. J Am Chem Soc 64(3):477–480

    CAS  Google Scholar 

  11. Iversen L, Gibbons S, Treble R, Setola V, Huang XP, Roth BL (2013) Neurochemical profiles of some novel psychoactive substances. Eur J Pharmacol 700(1-3):147–151. https://doi.org/10.1016/j.ejphar.2012.12.006 PubMed PMID: 23261499; PubMed Central PMCID: PMC3582025

    Article  CAS  PubMed  Google Scholar 

  12. 38th ECDD (2016) Agenda item 4.8. Methiopropamine (MPA) critical review report agenda item 4.8 expert. https://www.who.int/medicines/access/controlled-substances/4.8_MPA_CritReview.pdf?ua=1

  13. Methiopropamine (MPA): a review of the evidence of use and harm. Further advice—June 2017 https://assets.publishing.service.gov.uk/government/uploads/system/uploads/attachment_data/file/619755/ACMD_s_further_advice_on_methiopropamine_June_2017.pdf

  14. Casale JF, Hays PA (2011) Methiopropamine: an analytical profile. Microgram J 8(2):53–57

    CAS  Google Scholar 

  15. Lee HM, Wood DM, Hudson S, Archer JR, Dargan PI (2014) Acute toxicity associated with analytically confirmed recreational use of methiopropamine (1-(thiophen-2-yl)-2-methylaminopropane). J Med Toxicol. 10(3):299–302. https://doi.org/10.1007/s13181-014-0399-y PubMed PMID: 24706157; PubMed Central PMCID: PMC4141929

    Article  PubMed  PubMed Central  Google Scholar 

  16. Anne S, Tse R, Cala AD (2015) A fatal case of isolated methiopropamine (1-(thiophen-2-yl)-2-methylaminopropane) toxicity: a case report. Am J Forensic Med Pathol 36(3):205–206. https://doi.org/10.1097/PAF.0000000000000170 PubMed PMID: 26049970

    Article  PubMed  Google Scholar 

  17. Tuv SS, Bergh MS, Vindenes V, Karinen R (2016) Methiopropamine in blood samples from drivers suspected of being under the influence of drugs. Traffic Inj Prev. 17(1):1–4. https://doi.org/10.1080/15389588.2015.1036157 PubMed PMID: 25874580

    Article  PubMed  Google Scholar 

  18. Daveluy A, Castaing N, Cherifi H, Richeval C, Humbert L, Faure I, Labadie M, Allorge D, Haramburu F, Molimard M, Titier K (2016) Acute methiopropamine intoxication after “synthacaine” consumption. J Anal Toxicol 40(9):758–760 PubMed PMID: 27474360

    CAS  PubMed  Google Scholar 

  19. Wille SMR, Richeval C, Nachon-Phanithavong M, Gaulier JM, Di Fazio V, Humbert L, Samyn N, Allorge D (2018) Prevalence of new psychoactive substances and prescription drugs in the Belgian driving under the influence of drugs population. Drug Test Anal. 10(3):539–547. https://doi.org/10.1002/dta.2232 PubMed PMID: 28640970

    Article  CAS  PubMed  Google Scholar 

  20. Ford LT, Berg JD (2018) Analytical evidence to show letters impregnated with novel psychoactive substances are a means of getting drugs to inmates within the UK prison service. Ann Clin Biochem 55(6):673–678. https://doi.org/10.1177/0004563218767462 PubMed PMID: 29534614

    Article  CAS  PubMed  Google Scholar 

  21. Foti F, Marti M, Ossato A, Bilel S, Sangiorgi E, Botrè F, Cerbelli B, Baldi A, De-Giorgio F (2019) Phenotypic effects of chronic and acute use of methiopropamine in a mouse model. Int J Legal Med 133(3):811–820. https://doi.org/10.1007/s00414-018-1891-8 PubMed PMID: 30056621

    Article  PubMed  Google Scholar 

  22. Yoon HS, Cai WT, Lee YH, Park KT, Lee YS, Kim JH (2016) The expression of methiopropamine-induced locomotor sensitization requires dopamine D2, but not D1, receptor activation in the rat. Behav Brain Res 311:403–407. https://doi.org/10.1016/j.bbr.2016.05.060 PubMed PMID: 27265782

    Article  CAS  PubMed  Google Scholar 

  23. Ossato A, Vigolo A, Trapella C, Seri C, Rimondo C, Serpelloni G, Marti M (2015) JWH-018 impairs sensorimotor functions in mice. Neuroscience 300:174–188. https://doi.org/10.1016/j.neuroscience.2015.05.021 PubMed PMID: 25987201

    Article  CAS  PubMed  Google Scholar 

  24. Ossato A, Bilel S, Gregori A, Talarico A, Trapella C, Gaudio RM, De-Giorgio F, Tagliaro F, Neri M, Fattore L, Marti M (2018) Neurological, sensorimotor and cardiorespiratory alterations induced by methoxetamine, ketamine and phencyclidine in mice. Neuropharmacology. 141:167–180. https://doi.org/10.1016/j.neuropharm.2018.08.017 PubMed PMID: 30165078

    Article  CAS  PubMed  Google Scholar 

  25. Vigolo A, Ossato A, Trapella C, Vincenzi F, Rimondo C, Seri C, Varani K, Serpelloni G, Marti M (2015) Novel halogenated derivates of JWH-018: behavioral and binding studies in mice. Neuropharmacology. 95:68–82. https://doi.org/10.1016/j.neuropharm.2015.02.008 PubMed PMID: 25769232

    Article  CAS  PubMed  Google Scholar 

  26. Canazza I, Ossato A, Trapella C, Fantinati A, De Luca MA, Margiani G, Vincenzi F, Rimondo C, Di Rosa F, Gregori A, Varani K, Borea PA, Serpelloni G, Marti M (2016) Effect of the novel synthetic cannabinoids AKB48 and 5F-AKB48 on “tetrad”, sensorimotor, neurological and neurochemical responses in mice. In vitro and in vivo pharmacological studies. Psychopharmacology 233(21–22):3685–3709 PubMed PMID: 27527584

    CAS  PubMed  Google Scholar 

  27. Bilel S, Tirri M, Arfè R, Stopponi S, Soverchia L, Ciccocioppo R, Frisoni P, Strano-Rossi S, Miliano C, De-Giorgio F, Serpelloni G, Fantinati A, De Luca MA, Neri M, Marti M (2019) Pharmacological and behavioral effects of the synthetic cannabinoid AKB48 in rats. Front Neurosci 13:1163. https://doi.org/10.3389/fnins.2019.01163 eCollection 2019. PubMed PMID: 31736697; PubMed Central PMCID: PMC6831561

    Article  PubMed  PubMed Central  Google Scholar 

  28. Ossato A, Uccelli L, Bilel S, Canazza I, Di Domenico G, Pasquali M, Pupillo G, De Luca MA, Boschi A, Vincenzi F, Rimondo C, Beggiato S, Ferraro L, Varani K, Borea PA, Serpelloni G, De-Giorgio F, Marti M (2017) Psychostimulant effect of the synthetic cannabinoid JWH-018 and AKB48: behavioral, neurochemical, and dopamine transporter scan imaging studies in mice. Front Psych 8:130. https://doi.org/10.3389/fpsyt.2017.00130 eCollection 2017. PubMed PMID: 28824464; PubMed Central PMCID: PMC5543288

    Article  Google Scholar 

  29. Ossato A, Canazza I, Trapella C, Vincenzi F, De Luca MA, Rimondo C, Varani K, Borea PA, Serpelloni G, Marti M (2016) Effect of JWH-250, JWH-073 and their interaction on “tetrad”, sensorimotor, neurological and neurochemical responses in mice. Prog Neuropsychopharmacol Biol Psych 67:31–50. https://doi.org/10.1016/j.pnpbp.2016.01.007 PubMed PMID: 26780169

    Article  CAS  Google Scholar 

  30. Koch M (1999) The neurobiology of startle. Prog Neurobiol 59(2):107–128 PubMed PMID: 10463792

    CAS  PubMed  Google Scholar 

  31. Marti M, Neri M, Bilel S, Di Paolo M, La Russa R, Ossato A, Turillazzi E (2019) MDMA alone affects sensorimotor and prepulse inhibition responses in mice and rats. Tips in the debate on potential MDMA unsafety in human activity. Forensic Toxicol 37(1):132–144

    CAS  Google Scholar 

  32. Halberstadt AL (2015) Recent advances in the neuropsychopharmacology of serotonergic hallucinogens. Behav Brain Res 277:99–120. https://doi.org/10.1016/j.bbr.2014.07.016 PubMed PMID: 25036425; PubMed Central PMCID: PMC4642895

    Article  CAS  PubMed  Google Scholar 

  33. Elmore JS, Decker AM, Sulima A, Rice KC, Partilla JS, Blough BE, Baumann MH (2018) Comparative neuropharmacology of N-(2-methoxybenzyl)-2,5-dimethoxyphenethylamine (NBOMe) hallucinogens and their 2C counterparts in male rats. Neuropharmacology. 142:240–250. https://doi.org/10.1016/j.neuropharm.2018.02.033 PubMed PMID: 29501528; PubMed Central PMCID: PMC6119551

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  34. Canazza I, Ossato A, Trapella C, Seri C, Rimondo C, Serpelloni G, Marti M, (2015) 2C-B and 25I-NBOMe impair sensorimotor functions in mice. Proceedings from Italian Society of Pharmacology “addictive disorders: from neurobiology to novel therapeutic strategies” P.9. Palermo, Italy, March 27th-28th

  35. Lambert FM, Bras H, Cardoit L, Vinay L, Coulon P, Glover JC (2016) Early postnatal maturation in vestibulospinal pathways involved in neck and forelimb motor control. Dev Neurobiol 76(10):1061–1077. https://doi.org/10.1002/dneu.22375 PubMed PMID: 26724676

    Article  CAS  PubMed  Google Scholar 

  36. Clarac F, Vinay L, Cazalets JR, Fady JC, Jamon M (1998) Role of gravity in the development of posture and locomotion in the neonatal rat. Brain Res Brain Res Rev 28(1–2):35–43 PubMed PMID: 9795120

    CAS  PubMed  Google Scholar 

  37. Tosolini AP, Morris R (2012) Spatial characterization of the motor neuron columns supplying the rat forelimb. Neuroscience 200:19–30. https://doi.org/10.1016/j.neuroscience.2011.10.054 PubMed PMID: 22100785

    Article  CAS  PubMed  Google Scholar 

  38. Tosolini AP, Mohan R, Morris R (2013) Targeting the full length of the motor end plate regions in the mouse forelimb increases the uptake of fluoro-gold into corresponding spinal cord motor neurons. Front Neurol 4:58. https://doi.org/10.3389/fneur.2013.00058 eCollection 2013. PubMed PMID: 23730296; PubMed Central PMCID: PMC3657688

    Article  PubMed  PubMed Central  Google Scholar 

  39. Angelaki DE, Cullen KE (2008) Vestibular system: the many facets of a multimodal sense. Annu Rev Neurosci 31:125–150. https://doi.org/10.1146/annurev.neuro.31.060407.125555 PubMed PMID: 18338968

    Article  CAS  PubMed  Google Scholar 

  40. Cullen KE (2012) The vestibular system: multimodal integration and encoding of self-motion for motor control. Trends Neurosci 35(3):185–196. https://doi.org/10.1016/j.tins.2011.12.001 PubMed PMID: 22245372; PubMed Central PMCID: PMC4000483

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  41. Etienne AS, Maurer R, Séguinot V (1996) Path integration in mammals and its interaction with visual landmarks. J Exp Biol 199(Pt 1):201–209 PubMed PMID: 8576691

    CAS  PubMed  Google Scholar 

  42. Wakita R, Tanabe S, Tabei K, Funaki A, Inoshita T, Hirano T (2017) Differential regulations of vestibulo-ocular reflex and optokinetic response by β- and α2-adrenergic receptors in the cerebellar flocculus. Sci Rep 7(1):3944. https://doi.org/10.1038/s41598-017-04273-9 PubMed PMID: 28638085; PubMed Central PMCID: PMC5479797

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  43. Eybalin M, Charachon G, Renard N (1993) Dopaminergic lateral efferent innervation of the Guinea-pig cochlea: immunoelectron microscopy of catecholamine-synthesizing enzymes and effect of 6-hydroxydopamine. Neuroscience. 54(1):133–142 PubMed PMID: 8100046

    CAS  PubMed  Google Scholar 

  44. Karadaghy AA, Lasak JM, Chomchai JS, Khan KM, Drescher MJ, Drescher DG (1997) Quantitative analysis of dopamine receptor messages in the mouse cochlea. Brain Res Mol Brain Res 44(1):151–156 PubMed PMID: 9030711

    CAS  PubMed  Google Scholar 

  45. Darrow KN, Simons EJ, Dodds L, Liberman MC (2006) Dopaminergic innervation of the mouse inner ear: evidence for a separate cytochemical group of cochlear efferent fibers. J Comp Neurol 498(3):403–414 PubMed PMID: 16871528; PubMed Central PMCID: PMC1805779

    CAS  PubMed  PubMed Central  Google Scholar 

  46. Inoue T, Matsubara A, Maruya S, Yamamoto Y, Namba A, Sasaki A, Shinkawa H (2006) Localization of dopamine receptor subtypes in the rat spiral ganglion. Neurosci Lett 399(3):226–229 PubMed PMID: 16490310

    CAS  PubMed  Google Scholar 

  47. Niu X, Canlon B (2006) The signal transduction pathway for the dopamine D1 receptor in the guinea-pig cochlea. Neuroscience. 137(3):981–990 PubMed PMID: 16330149

    CAS  PubMed  Google Scholar 

  48. Maison SF, Liu XP, Eatock RA, Sibley DR, Grandy DK, Liberman MC (2012) Dopaminergic signaling in the cochlea: receptor expression patterns and deletion phenotypes. J Neurosci 32(1):344–355. https://doi.org/10.1523/JNEUROSCI.4720-11.2012 PubMed PMID: 22219295; PubMed Central PMCID: PMC3313790

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  49. Drescher MJ, Cho WJ, Folbe AJ, Selvakumar D, Kewson DT, Abu-Hamdan MD, Oh CK, Ramakrishnan NA, Hatfield JS, Khan KM, Anne S, Harpool EC, Drescher DG (2010) An adenylyl cyclase signaling pathway predicts direct dopaminergic input to vestibular hair cells. Neuroscience 171(4):1054–1074. https://doi.org/10.1016/j.neuroscience.2010.09.051 PubMed PMID: 20883745; PubMed Central PMCID: PMC3025754

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  50. Ruel J, Nouvian R, Gervais d'Aldin C, Pujol R, Eybalin M, Puel JL (2001) Dopamine inhibition of auditory nerve activity in the adult mammalian cochlea. Eur J Neurosci 14(6):977–986 PubMed PMID: 11595036

    CAS  PubMed  Google Scholar 

  51. d'Aldin C, Puel JL, Leducq R, Crambes O, Eybalin M, Pujol R (1995) Effects of a dopaminergic agonist in the guinea pig cochlea. Hear Res 90(1-2):202–211 Erratum in: Hear Res 1997 Jan;103(1-2):225. PubMed PMID: 8974998

    CAS  PubMed  Google Scholar 

  52. Shima F (1984) Circling behavior depending on striopallidal and vestibular functions. Adv Neurol 40:47–54 PubMed PMID: 6695624

    CAS  PubMed  Google Scholar 

  53. Lai H, Tsumori T, Shiroyama T, Yokota S, Nakano K, Yasui Y (2000) Morphological evidence for a vestibulo-thalamo-striatal pathway via the parafascicular nucleus in the rat. Brain Res 872(1-2):208–214 PubMed PMID: 10924695

    CAS  PubMed  Google Scholar 

  54. Marusich JA, Grant KR, Blough BE, Wiley JL (2012) Effects of synthetic cathinones contained in “bath salts” on motor behavior and a functional observational battery in mice. Neurotoxicology. 33(5):1305–1313. https://doi.org/10.1016/j.neuro.2012.08.003 PubMed PMID: 22922498; PubMed Central PMCID: PMC3475178

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  55. Marusich JA, Antonazzo KR, Wiley JL, Blough BE, Partilla JS, Baumann MH (2014) Pharmacology of novel synthetic stimulants structurally related to the “bath salts” constituent 3,4-methylenedioxypyrovalerone (MDPV). Neuropharmacology. 87:206–213. https://doi.org/10.1016/j.neuropharm.2014.02.016 PubMed PMID: 24594476; PubMed Central PMCID: PMC4152390

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  56. Saha K, Partilla JS, Lehner KR, Seddik A, Stockner T, Holy M, Sandtner W, Ecker GF, Sitte HH, Baumann MH (2015) ‘Second-generation’ mephedrone analogs, 4-MEC and 4-MePPP, differentially affect monoamine transporter function. Neuropsychopharmacology. 40(6):1321–1331. https://doi.org/10.1038/npp.2014.325 PubMed PMID: 25502630; PubMed Central PMCID: PMC4397398

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  57. Giannotti G, Canazza I, Caffino L, Bilel S, Ossato A, Fumagalli F, Marti M (2017) The cathinones MDPV and α-PVP elicit different behavioral and molecular effects following cute exposure. Neurotox Res 32(4):594–602. https://doi.org/10.1007/s12640-017-9769-y PubMed PMID: 28646469

    Article  CAS  PubMed  Google Scholar 

  58. Gold LH, Geyer MA, Koob GF (1989) Neurochemical mechanisms involved in behavioral effects of amphetamines and related designer drugs. NIDA Res Monogr 94:101–126 PubMed PMID: 2514360

    CAS  PubMed  Google Scholar 

  59. Baumann MH, Partilla JS, Lehner KR (2013) Psychoactive “bath salts”: not so soothing. Eur J Pharmacol 698(1-3):1–5. https://doi.org/10.1016/j.ejphar.2012.11.020 PubMed PMID: 23178799; PubMed Central PMCID: PMC3537229

    Article  CAS  PubMed  Google Scholar 

  60. Glennon RA, Young R (2016) Neurobiology of 3,4-methylenedioxypyrovalerone (MDPV) and α-pyrrolidinovalerophenone (α-PVP). Brain Res Bull 126(Pt 1):111–126. https://doi.org/10.1016/j.brainresbull.2016.04.011 PubMed PMID: 27142261; PubMed Central PMCID: PMC5817884

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  61. Zaniewska M, Filip M, Przegalinski E (2015) The involvement of norepinephrine in behaviors related to psychostimulant addiction. Curr Neuropharmacol 13(3):407–418 PubMed PMID: 26411968; PubMed Central PMCID: PMC4812804

    CAS  PubMed  PubMed Central  Google Scholar 

  62. Aarde SM, Creehan KM, Vandewater SA, Dickerson TJ, Taffe MA (2015) In vivo potency and efficacy of the novel cathinone α-pyrrolidinopentiophenone and 3,4-methylenedioxypyrovalerone: self-administration and locomotor stimulation in male rats. Psychopharmacology 232(16):3045–3055. https://doi.org/10.1007/s00213-015-3944-8 PubMed PMID: 25925780; PubMed Central PMCID: PMC4515201

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  63. Miller ML, Moreno AY, Aarde SM, Creehan KM, Vandewater SA, Vaillancourt BD, Wright MJ Jr, Janda KD, Taffe MA (2013b) A methamphetamine vaccine attenuates methamphetamine-induced disruptions in thermoregulation and activity in rats. Biol Psychiatry 73:721–728

    CAS  PubMed  Google Scholar 

  64. Myles BJ, Jarrett LA, Broom SL, Speaker HA, Sabol KE (2008) The effects of methamphetamine on core body temperature in the rat—part 1: chronic treatment and ambient temperature. Psychopharmacology 198(3):301–311. https://doi.org/10.1007/s00213-007-1061-z PubMed PMID: 18438646

    Article  CAS  PubMed  Google Scholar 

  65. Myles BJ, Sabol KE (2008) The effects of methamphetamine on core body temperature in the rat—part 2: an escalating regimen. Psychopharmacology 198(3):313–322. https://doi.org/10.1007/s00213-007-1060-0 PubMed PMID: 18438647

    Article  CAS  PubMed  Google Scholar 

  66. Aarde SM, Angrish D, Barlow DJ, Wright MJ Jr, Vandewater SA, Creehan KM, Houseknecht KL, Dickerson TJ, Taffe MA (2013) Mephedrone (4-methylmethcathinone) supports intravenous self-administration in Sprague-Dawley and Wistar rats. Addict Biol 18(5):786–799. https://doi.org/10.1111/adb.12038 PubMed PMID: 23363010; PubMed Central PMCID: PMC3641159

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  67. Miller ML, Creehan KM, Angrish D, Barlow DJ, Houseknecht KL, Dickerson TJ, Taffe MA (2013) Changes in ambient temperature differentially alter the thermoregulatory, cardiac and locomotor stimulant effects of 4-methylmethcathinone (mephedrone). Drug Alcohol Depend 127(1-3):248–253. https://doi.org/10.1016/j.drugalcdep.2012.07.003 PubMed PMID: 22832282; PubMed Central PMCID: PMC3491086

    Article  CAS  PubMed  Google Scholar 

  68. Wright MJ Jr, Angrish D, Aarde SM, Barlow DJ, Buczynski MW, Creehan KM, Vandewater SA, Parsons LH, Houseknecht KL, Dickerson TJ, Taffe MA (2012) Effect of ambient temperature on the thermoregulatory and locomotor stimulant effects of 4-methylmethcathinone in Wistar and Sprague-Dawley rats. PLoS One 7(8):e44652. https://doi.org/10.1371/journal.pone.0044652 PubMed PMID: 22952999; PubMed Central PMCID: PMC3432134

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  69. Cox B, Lee TF (1979) Evidence for an endogenous dopamine-mediated hypothermia in the rat. Br J Pharmacol 67(4):605–610 PubMed PMID: 519109; PubMed Central PMCID: PMC2043903

    CAS  PubMed  PubMed Central  Google Scholar 

  70. Malberg JE, Seiden LS (1998) Small changes in ambient temperature cause large changes in 3,4-methylenedioxymethamphetamine (MDMA)-induced serotonin neurotoxicity and core body temperature in the rat. J Neurosci 18:5086–5094

    CAS  PubMed  PubMed Central  Google Scholar 

  71. Shortall SE, Green AR, Swift KM, Fone KC, King MV (2013) Differential effects of cathinone compounds and MDMA on body temperature in the rat, and pharmacological characterization of mephedrone-induced hypothermia. Br J Pharmacol 168(4):966–977. https://doi.org/10.1111/j.1476-5381.2012.02236.x PubMed PMID: 23043631, PubMed Central PMCID: PMC3631384

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  72. Baumann MH, Ayestas MA Jr, Partilla JS, Sink JR, Shulgin AT, Daley PF, Brandt SD, Rothman RB, Ruoho AE, Cozzi NV (2012) The designer methcathinone analogs, mephedrone and methylone, are substrates for monoamine transporters in brain tissue. Neuropsychopharmacology. 37(5):1192–1203. https://doi.org/10.1038/npp.2011.304 PubMed PMID: 22169943; PubMed Central PMCID: PMC3306880

    Article  CAS  PubMed  Google Scholar 

  73. Hadlock GC, Webb KM, McFadden LM, Chu PW, Ellis JD, Allen SC, Andrenyak DM, Vieira-Brock PL, German CL, Conrad KM, Hoonakker AJ, Gibb JW, Wilkins DG, Hanson GR, Fleckenstein AE (2011) 4-Methylmethcathinone (mephedrone): neuropharmacological effects of a designer stimulant of abuse. J Pharmacol Exp Ther 339(2):530–536. https://doi.org/10.1124/jpet.111.184119 PubMed PMID: 21810934; PubMed Central PMCID: PMC3200001

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  74. Clark WG, Lipton JM (1985) Changes in body temperature after administration of amino acids, peptides, dopamine, neuroleptics and related agents: II. Neurosci Biobehav Rev 9(2):299–371 PubMed PMID: 2861591

    CAS  PubMed  Google Scholar 

  75. Clark WG, Lipton JM (1986) Changes in body temperature after administration of adrenergic and serotonergic agents and related drugs including antidepressants: II. Neurosci Biobehav Rev 10(2):153–220 PubMed PMID: 2942805

    CAS  PubMed  Google Scholar 

  76. Gisolfi CV, Christman JV (1980) Thermal effects of injecting norepinephrine into hypothalamus of the rat during rest and exercise. J Appl Physiol Respir Environ Exerc Physiol 49(6):937–941 PubMed PMID: 7440300

    CAS  PubMed  Google Scholar 

  77. Gisolfi CV, Mora F, Bloomfield S, Beattie M, Magnes S (1980) Effects of apomorphine and pimozide on temperature regulation during exercise in the rat. J Appl Physiol Respir Environ Exerc Physiol 49(3):363–366 PubMed PMID: 7204155

    CAS  PubMed  Google Scholar 

  78. Brown SJ, Gisolfi CV, Mora F (1982) Temperature regulation and dopaminergic systems in the brain: does the substantia nigra play a role? Brain Res 234(2):275–286 PubMed PMID: 7059831

    CAS  PubMed  Google Scholar 

  79. Cox B, Lee TF (1980) Further evidence for a physiological role for hypothalamic dopamine in thermoregulation in the rat. J Physiol 300:7–17 PubMed PMID: 7381796; PubMed Central PMCID: PMC1279340

    CAS  PubMed  PubMed Central  Google Scholar 

  80. Nunes JL, Sharif NA, Michel AD, Whiting RL (1991) Dopamine D2-receptors mediate hypothermia in mice: ICV and IP effects of agonists and antagonists. Neurochem Res 16(10):1167–1174 PubMed PMID: 1686637

    CAS  PubMed  Google Scholar 

  81. Fumagalli F, Gainetdinov RR, Valenzano KJ, Caron MG (1998) Role of dopamine transporter in methamphetamine-induced neurotoxicity: evidence from mice lacking the transporter. J Neurosci 18(13):4861–4869 PubMed PMID: 9634552; PubMed Central PMCID: PMC6792558

    CAS  PubMed  PubMed Central  Google Scholar 

  82. Zheng X, Hasegawa H (2015) Central dopaminergic neurotransmission plays an important role in thermoregulation and performance during endurance exercise. Eur J Sport Sci 16(7):818–828. https://doi.org/10.1080/17461391.2015.1111938 Epub 2015 Nov 19

    Article  PubMed  Google Scholar 

  83. Mallick BN, Alam MN (1992) Different types of norepinephrinergic receptors are involved in preoptic area mediated independent modulation of sleep-wakefulness and body temperature. Brain Res 591(1):8–19

    CAS  PubMed  Google Scholar 

  84. Kumar VM, Vetrivelan R, Mallick HN (2007) Noradrenergic afferents and receptors in the medial preoptic area: neuroanatomical and neurochemical links between the regulation of sleep and body temperature. Neurochem Int 50(6):783–790 Epub 2007 Feb 27

    CAS  PubMed  Google Scholar 

  85. Rusyniak DE, Zaretskaia MV, Zaretsky DV, DiMicco JA (2007) 3,4-Methylenedioxymethamphetamine- and 8-hydroxy-2-di-n-propylamino-tetralin-induced hypothermia: role and location of 5-hydroxytryptamine 1A receptors. J Pharmacol Exp Ther 323(2):477–487 Epub 2007 Aug 16

    CAS  PubMed  Google Scholar 

  86. Llorca-Torralba M, Borges G, Neto F, Mico JA, Berrocoso E (2016) Noradrenergic locus coeruleus pathways in pain modulation. Neuroscience 338:93–113. https://doi.org/10.1016/j.neuroscience.2016.05.057 PubMed PMID: 27267247

    Article  CAS  PubMed  Google Scholar 

  87. Leventhal L, Smith V, Hornby G, Andree TH, Brandt MR, Rogers KE (2007) Differential and synergistic effects of selective norepinephrine and serotonin reuptake inhibitors in rodent models of pain. J Pharmacol Exp Ther 320(3):1178–1185 PubMed PMID: 17142646

    CAS  PubMed  Google Scholar 

  88. Suehiro K, Funao T, Fujimoto Y, Yamada T, Mori T, Nishikawa K (2013) Relationship between noradrenaline release in the locus coeruleus and antiallodynic efficacy of analgesics in rats with painful diabetic neuropathy. Life Sci 92(23):1138–1144. https://doi.org/10.1016/j.lfs.2013.04.015 PubMed PMID: 23651660

    Article  CAS  PubMed  Google Scholar 

  89. Tella SR, Schindler CW, Goldberg SR (1992) Cardiovascular effects of cocaine in conscious rats: relative significance of central sympathetic stimulation and peripheral neuronal monoamine uptake and release mechanisms. J Pharmacol Exp Ther 262(2):602–610 PubMed PMID: 1501115

    CAS  PubMed  Google Scholar 

  90. Schindler CW, Thorndike EB, Blough BE, Tella SR, Goldberg SR, Baumann MH (2014) Effects of 3,4-methylenedioxymethamphetamine (MDMA) and its main metabolites on cardiovascular function in conscious rats. Br J Pharmacol 171(1):83–91. https://doi.org/10.1111/bph.12423 PubMed PMID: 24328722; PubMed Central PMCID: PMC3874698

    Article  CAS  PubMed  Google Scholar 

  91. Alsufyani HA, Docherty JR (2015) Direct and indirect cardiovascular actions of cathinone and MDMA in the anaesthetized rat. Eur J Pharmacol 758:142–146. https://doi.org/10.1016/j.ejphar.2015.03.079 PubMed PMID: 25863258

    Article  CAS  PubMed  Google Scholar 

  92. Varner KJ, Daigle K, Weed PF, Lewis PB, Mahne SE, Sankaranarayanan A, Winsauer PJ (2013) Comparison of the behavioral and cardiovascular effects of mephedrone with other drugs of abuse in rats. Psychopharmacology 225(3):675–685. https://doi.org/10.1007/s00213-012-2855-1 PubMed PMID: 22972412; PubMed Central PMCID: PMC3538107

    Article  CAS  PubMed  Google Scholar 

  93. Meng H, Cao J, Kang J, Ying X, Ji J, Reynolds W, Rampe D (2012) Mephedrone, a new designer drug of abuse, produces acute hemodynamic effects in the rat. Toxicol Lett 208(1):62–68. https://doi.org/10.1016/j.toxlet.2011.10.010 PubMed PMID: 22037396

    Article  CAS  PubMed  Google Scholar 

  94. Schindler CW, Thorndike EB, Suzuki M, Rice KC, Baumann MH (2016) Pharmacological mechanisms underlying the cardiovascular effects of the “bath salt” constituent 3,4-methylenedioxypyrovalerone (MDPV). Br J Pharmacol 173(24):3492–3501. https://doi.org/10.1111/bph.13640 PubMed PMID: 27714779; PubMed Central PMCID: PMC5120154

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  95. Docherty JR (2012) Yohimbine antagonises α1A- and α1D-adrenoceptor mediated components in addition to the α2A-adrenoceptor component to pressor responses in the pithed rat. Eur J Pharmacol 679(1-3):90–94. https://doi.org/10.1016/j.ejphar.2012.01.001 PubMed PMID: 22290390

    Article  CAS  PubMed  Google Scholar 

  96. Hysek CM, Fink AE, Simmler LD, Donzelli M, Grouzmann E, Liechti ME (2013) α1-Adrenergic receptors contribute to the acute effects of 3,4-methylenedioxymethamphetamine in humans. J Clin Psychopharmacol 33(5):658–666. https://doi.org/10.1097/JCP.0b013e3182979d32 PubMed PMID: 23857311

    Article  CAS  PubMed  Google Scholar 

  97. Alsufyani HA, Docherty JR (2019) Methylhexaneamine causes tachycardia and pressor responses indirectly by releasing noradrenaline in the rat. Eur J Pharmacol 843:121–125. https://doi.org/10.1016/j.ejphar.2018.10.047 PubMed PMID: 30395850

    Article  CAS  PubMed  Google Scholar 

  98. Viemari JC (2008) Noradrenergic modulation of the respiratory neural network. Respir Physiol Neurobiol 164(1-2):123–130. https://doi.org/10.1016/j.resp.2008.06.016 PubMed PMID: 18634907

    Article  CAS  PubMed  Google Scholar 

  99. Viemari JC, Ramirez JM (2006) Norepinephrine differentially modulates different types of respiratory pacemaker and nonpacemaker neurons. J Neurophysiol 95(4):2070–2082 PubMed PMID: 16394066

    CAS  PubMed  Google Scholar 

  100. Viemari JC, Bévengut M, Coulon P, Hilaire G (2004) Nasal trigeminal inputs release the A5 inhibition received by the respiratory rhythm generator of the mouse neonate. J Neurophysiol 91(2):746–758 PubMed PMID: 14561692

    PubMed  Google Scholar 

  101. Oliveira LM, Moreira TS, Kuo FS, Mulkey DK, Takakura AC (2016) α1- and α2-adrenergic receptors in the retrotrapezoid nucleus differentially regulate breathing in anesthetized adult rats. J Neurophysiol 116(3):1036–1048. https://doi.org/10.1152/jn.00023.2016 PubMed PMID: 27306670; PubMed Central PMCID: PMC5009208

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  102. Burke PG, Abbott SB, Coates MB, Viar KE, Stornetta RL, Guyenet PG (2014) Optogenetic stimulation of adrenergic C1 neurons causes sleep state-dependent cardiorespiratory stimulation and arousal with sighs in rats. Am J Respir Crit Care Med 190(11):1301–1310. https://doi.org/10.1164/rccm.201407-1262OC PubMed PMID: 25325789; PubMed Central PMCID: PMC4315817

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  103. Byard RW, Donkin J, Vink R (2018) The forensic implications of amphetamine intoxication in cases of inflicted blunt craniocerebral trauma. J Forensic Sci 63(1):151–153. https://doi.org/10.1111/1556-4029.13509

    Article  CAS  PubMed  Google Scholar 

  104. Eliyahu U, Berlin S, Hadad E, Heled Y, Moran DS (2007) Psychostimulants and military operations. Mil Med 172(4):383–387. PMID: 17484308. https://doi.org/10.7205/milmed.172.4.383

    Article  PubMed  Google Scholar 

  105. Vaiano F, Pascali JP, Bertol E (2019) New psychoactive substances: an actual problem or an overestimated phenomenon? Forensic Sci Int 304:109941. https://doi.org/10.1016/j.forsciint.2019.109941

    Article  CAS  PubMed  Google Scholar 

  106. Pascali JP, Vaiano F, Palumbo D, Umani Ronchi F, Mari F, Bertol E (2019) Psychotropic substance abuse and fitness to hold a driving license in Italy. Traffic Inj Prev 20(3):244–248. https://doi.org/10.1080/15389588.2019.1579320

    Article  PubMed  Google Scholar 

  107. Girotto E, Mesas AE, de Andrade SM, Birolim MM (2014) Psychoactive substance use by truck drivers: a systematic review. Occup Environ Med 71:71–76

    PubMed  Google Scholar 

  108. Dini G, Bragazzi NL, Montecucco A, Rahmani A, Durando P (2019) Psychoactive drug consumption among truck-drivers: a systematic review of the literature with meta-analysis and meta-regression. J Prev Med Hyg 60(2):E124–E139. https://doi.org/10.15167/2421-4248/jpmh2019.60.2.1245 eCollection 2019 Jun

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  109. Peacock A, Bruno R, Gisev N, Degenhardt L, Hall W, Sedefov R, White J, Thomas KV, Farrell M, Griffiths P (2019) New psychoactive substances: challenges for drug surveillance, control, and public health responses. Lancet 394(10209):1668–1684. https://doi.org/10.1016/S0140-6736(19)32231-7

    Article  PubMed  Google Scholar 

  110. Rosso GL, Montomoli C, Morini L, Candura SM (2017) Seven years of workplace drug testing in Italy: a systematic review and meta-analysis. Drug Test Anal. 9(6):844–852. https://doi.org/10.1002/dta.2189

    Article  CAS  PubMed  Google Scholar 

  111. Brcak M, Beck O, Bosch T, Carmichael D, Fucci N, George C, Piper M, Salomone A, Schielen W, Steinmeyer S, Taskinen S, Weinmann W (2018) European guidelines for workplace drug testing in oral fluid. Drug Test Anal 10(3):402–415. https://doi.org/10.1002/dta.2229

    Article  CAS  PubMed  Google Scholar 

  112. Salomone A, Palamar JJ, Vincenti M (2020) Should NPS be included in workplace drug testing? Drug Test Anal 12(2):191–194. https://doi.org/10.1002/dta.2749

  113. Champion KE, Teesson M, Newton NC (2016) Patterns and correlates f new psychoactive substance use in a sample of Australian high school students. Drug Alcohol Rev 35(3):338–344. https://doi.org/10.1111/dar.12312

    Article  PubMed  Google Scholar 

  114. Kunst LE, Gebhardt WA (2018) Prevalence and psychosocial correlates of party-drug use and associated problems among university students in the Netherlands. Subst Use Misuse 53(12):2077–2088. https://doi.org/10.1080/10826084.2018.1455700

    Article  PubMed  Google Scholar 

Download references

Funding

This study was funded by the Department of Anti-Drug Policies, of the Presidency of the Council of Ministers, Italy (project: “Effects of NPS: development of a multicentre research for the information enhancement of the Early Warning System” to M. Marti); local funds from the University of Ferrara (FAR 2016 and FAR 2017 to M. Marti); local funds from the Catholic University of Rome (Linea D1 2016 to F. De-Giorgio); and FIRB 2012 from the Italian Ministry of Education, University and Research (Grant no. RBFR12LDOW to F. De-Giorgio).

Author information

Authors and Affiliations

Authors

Contributions

All authors contributed to the study conception and design. Material preparation, experiment sections, and data collection and analysis were performed by Sabrine Bilel, Micaela Tirri, Raffaella Arfè, Claudio Trapella, Cristian Camuto, Federica Foti, Paolo Frisoni, Margherita Neri, and Francesco Botrè. The first draft of the manuscript was written by Matteo Marti and Fabio De-Giorgio and all authors commented on previous versions of the manuscript. All authors read and approved the final manuscript.

Corresponding author

Correspondence to Matteo Marti.

Ethics declarations

All applicable international, national, and institutional guidelines for the care and use of animals were followed. All procedures performed in the studies involving animals were in accordance with the ethical standards of the institution or practice at which the studies were conducted.

Conflict of interest

The authors declare that they have no conflict of interest.

Additional information

Publisher’s note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

De-Giorgio, F., Bilel, S., Tirri, M. et al. Methiopropamine and its acute behavioral effects in mice: is there a gray zone in new psychoactive substances users?. Int J Legal Med 134, 1695–1711 (2020). https://doi.org/10.1007/s00414-020-02302-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00414-020-02302-3

Keywords

Navigation