Skip to main content

Advertisement

Log in

Acute nicotine increases both impulsive choice and behavioural disinhibition in rats

  • Original Investigation
  • Published:
Psychopharmacology Aims and scope Submit manuscript

Abstract

Rationale

Heavy smokers exhibit greater levels of impulsive choice and behavioural disinhibition than non-smokers. To date, however, the relationship between nicotine use and differing dimensions of impulsivity has not been systematically assessed.

Objectives

A series of studies was designed to assess the acute dose–response effects of nicotine and the nicotinic receptor antagonist mecamylamine alone, and in combination with nicotine, on impulsive choice and behavioural disinhibition in rats.

Methods

Separate groups of rats were trained on a symmetrically reinforced go/no-go task to measure levels of disinhibition and a systematic delayed reward task to measure levels of impulsive choice. Once trained, all animals in each task were treated acutely with nicotine (0.125, 0.25, 0.5 and 1.0 mg/kg), mecamylamine (0.1, 0.3 and 1.0 mg/kg) and varying doses of mecamylamine (0.1, 0.3 and 1.0 mg/kg) prior to nicotine (0.5 mg/kg). An additional experiment assessed the effects of alterations in primary motivation (presatiation and fasting) on performance in both tasks.

Results

Acute nicotine increased both impulsive choice and behavioural disinhibition, effects that were blocked by pre-treatment with mecamylamine. Mecamylamine when administered alone did not alter impulsive behaviour. The lack of effect of presatiation on performance measures suggests that the observed nicotine-induced impulsivity cannot be attributed to the anorectic activity of the compound.

Conclusions

Present findings support the hypothesis that heightened impulsivity in smokers may in part be a consequence of the direct acute effects of nicotine. As such, drug-induced changes in impulsivity may play a critical role in the transition to and maintenance of nicotine dependence.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  • Anker JJ, Zlebnik NE, Gliddon LA et al (2009) Performance under a go/no-go task in rats selected for high and low impulsivity with a delay-discounting procedure. Behav Pharmacol 20:406–414

    Article  PubMed  Google Scholar 

  • Aron AR, Robbins TW, Poldrack RA (2004) Inhibition and the right inferior frontal cortex. Trends Cogn Sci 80:170–177

    Article  Google Scholar 

  • Audrain-McGovern J, Rodriguez D, Epstein LH et al (2009) Does delay discounting play an etiological role in smoking or is it a consequence of smoking? Drug Alcohol Depend 103:99–106

    Article  PubMed  Google Scholar 

  • Baker F, Johnson MW, Bickel WK (2003) Delay Discounting in current and never-before cigarette smokers: similarities and differences across commodity, sign, and magnitude. J Abnorm Psychol 112:382–392

    Article  PubMed  Google Scholar 

  • Basar K, Sesia T, Groenewegan H et al (2010) Nucleus accumbens and impulsivity. Prog Neurobiol 92:533–557

    Article  PubMed  Google Scholar 

  • Bekker EM, Böcker KBE, Van Hunsel F, van den Berg MC, Kenemans JL (2005) Acute effects of nicotine on attention and response inhibition. Pharmacol Biochem Behav 82:539–548

    Article  PubMed  CAS  Google Scholar 

  • Benwell ME, Balfour DJ (1992) The effects of acute and repeated nicotine treatment on nucleus accumbens dopamine and locomotor activity. Br J Pharmacol 105:849–856

    PubMed  CAS  Google Scholar 

  • Bezzina G, Body S, Cheung THC et al (2008) Effect of disconnecting the orbital prefrontal cortex from the nucleus accumbens core on inter-temporal choice behaviour: a quantitative analysis. Behav Brain Res 191:272–279

    Article  PubMed  CAS  Google Scholar 

  • Bickel WK, Odum AL, Madden GJ (1999) Impulsivity and cigarette smoking: delay discounting in current, never, and ex-smokers. Psychopharmacology 146:447–454

    Article  PubMed  CAS  Google Scholar 

  • Bickel WK, Marsch LA (2001) Toward a behavioural economic understanding of drug dependence: delay discounting process. Addiction 96:73–86

    Article  PubMed  CAS  Google Scholar 

  • Bickel WK, Yi R, Kowal BR (2008) Cigarette smokers discount past and future rewards symmetrically and more than controls: Is discounting a measure of impulsivity? Drug Alcohol Depend 96:256–262

    Article  PubMed  Google Scholar 

  • Bizarro WK, Stolerman IP (2003) Attentional effects of nicotine and amphetamine in rats at different levels of motivation. Psychopharmacology 170:271–277

    Article  PubMed  CAS  Google Scholar 

  • Bizarro L, Patel S, Murtagh C, Stolerman IP (2004) Differential effects of psychomotor stimulants on attentional performance in rats: nicotine, amphetamine, caffeine and methylphenidate. Behav Pharmacol 15:195–206

    PubMed  CAS  Google Scholar 

  • Bizot JC (1997) Effects of psychoactive drugs on temporal discrimination in rats. Behav Pharmacol 8:293–308

    Article  PubMed  CAS  Google Scholar 

  • Bizot JC (1998) Effects of various drugs including organophosphorus compounds (OPC) and therapeutic compounds against OPC on DRL responding. Pharmacol Biochem Behav 59:1069–1080

    Article  PubMed  CAS  Google Scholar 

  • Blondel A, Sanger DJ, Moser PC (2000) Characterisation of the effects of nicotine in the five-choice serial reaction time task in rats: antagonist studies. Psychopharmacology 149:293–305

    Article  PubMed  CAS  Google Scholar 

  • Cadoni C, Di Chiara G (2000) Differential changes in accumbens shell and core dopamine in behavioural sensitization to nicotine. Eur J Pharmacol 387:R23–R25

    Article  PubMed  CAS  Google Scholar 

  • Cardinal RN, Robbins TW, Everitt BJ (2000) The effects of d-amphetamine, chlordiazepoxide, alpha-flupenthixol and behavioural manipulations on choice of signalled and unsignalled delayed reinforcement in rats. Psychopharmacology 152:362–375

    Article  PubMed  CAS  Google Scholar 

  • Cardinal RN, Pennicott DR, Sugathapala CL et al (2001) Impulsive choice induced rats by lesions of the nucleus accumbens core. Science 292:2499–2501

    Article  PubMed  CAS  Google Scholar 

  • Carli M, Robbins TW, Evenden JL, Everitt BJ (1983) Effects of lesions to ascending noradrenergic neurons on performance of a 5-choice serial reaction task in rats—implications for theories of dorsal noradrenergic bundle function based on selective attention and arousal. Behav Brain Res 9:361–380

    Article  PubMed  CAS  Google Scholar 

  • Carrasco MC, Redolat R, Simon VM (1998) Effects if cigarette smoking on time estimation. Hum Psychopharm Clin 13:565–573

    Article  Google Scholar 

  • Chavez-Noriega LE, Crona JH, Washburn MS et al (1997) Pharmacological characterization of recombinant human neuronal nicotinic acetylcholine receptors h alpha 2 beta 2, h alpha 2 beta 4, h alpha 3 beta 2, h alpha 3 beta 4, h alpha 4 beta 2, h alpha 4 beta 4 and h alpha 7 expressed in Xenopus oocytes. J Pharmacol Exp Ther 280:346–356

    PubMed  CAS  Google Scholar 

  • Christakou A, Robbins TW, Everitt BJ (2004) Prefrontal-ventral striatal system involved in affective modulation of attentional performance: implications for cortico-striatal circuitry function. J Neurosci 24:773–780

    Article  PubMed  CAS  Google Scholar 

  • Churchwell JC, Morris AM, Heurtelou NM et al (2009) Interactions between the prefrontal cortex and amygdala during delay discounting and reversal. Behav Neurosci 123:1185–1196

    Article  PubMed  Google Scholar 

  • Clarke PBS, Kumar R (1983) The effects of nicotine on locomotor activity in non-tolerant and tolerant rats. Br J Pharmacol 78:329–337

    PubMed  CAS  Google Scholar 

  • Dallery J, Locey ML (2005) Effects of acute and chronic nicotine on impulsive choice rats. Behav Pharmacol 16:15–23

    Article  PubMed  CAS  Google Scholar 

  • Day M, Pan JB, Buckley MJ et al (2007) Differential effects of ciproxifan and nicotine on impulsivity and attention measures in the 5-choice serial reaction time test. Biochem Pharmacol 73:1123–1134

    Article  PubMed  CAS  Google Scholar 

  • De Wit H, Enggasser JL, Richards JB (2002) Acute administration of d-amphetamine decreases impulsivity in healthy volunteers. Neuropsychopharmacology 27:813–825

    Article  PubMed  Google Scholar 

  • Di Chiara G, Imperato A (1988) Drugs abused by humans preferentially increase synaptic dopamine concentrations in the mesolimbic system of freely moving rats. P Natl Acad Sci USA 85:5274–5278

    Article  Google Scholar 

  • Diergaarde L, Pattij T, Poortvliet I et al (2008) Impulsive choice and impulsive action predict vulnerability to distinct stages of nicotine seeking in rats. Biol Psychiatry 63:301–308

    Article  PubMed  CAS  Google Scholar 

  • Dinn WM, Aycicegi A, Harris CL (2004) Cigarette smoking in a student sample: neurocognitive and clinical correlates. Addict Behav 29:107–126

    Article  PubMed  Google Scholar 

  • Eagle DM, Bari A, Robbins TW (2008) The neuropsychopharmacology of action inhibition: cross-species translation of the stop-signal and go/no-go tasks. Psychopharmacology 199:439–456

    Article  PubMed  CAS  Google Scholar 

  • Eagle DM, Lehmann O, Theobald DEH et al (2009) Serotonin depletion impairs waiting but not stop-signal reaction time in rats: implications for theories of the role of 5-HT in behavioral inhibition. Neuropsychopharmacology 34:1311–1321

    Article  PubMed  CAS  Google Scholar 

  • Evenden JL, Ryan CN (1996) The pharmacology of impulsive behaviour in rats: the effects of drugs on response choice with varying delays of reinforcement. Psychopharmacology 128:161–170

    Article  PubMed  CAS  Google Scholar 

  • Evenden JL (1999) Varieties of impulsivity. Psychopharmacology 146:348–361

    Article  PubMed  CAS  Google Scholar 

  • Farrar AM, Kieres AK, Hausknecht KA et al (2003) Effects of reinforcer magnitude on an animal model of impulsive behavior. Behav Process 64:261–271

    Article  Google Scholar 

  • Feola TR, de Wit H, Richards JB (2000) Effects of d-amphetamine and alcohol on a measure of behavioral inhibition in rats. Behav Neurosci 114:838–848

    Article  PubMed  CAS  Google Scholar 

  • Fields S, Collins C, Leraas K, Reynolds B (2009) Dimensions of impulsive behavior in adolescent smokers and nonsmokers. Exp Clin Psychol 17:302–311

    Article  Google Scholar 

  • Fillmore MT, Rush CR, Hays L (2002) Acute effects of oral cocaine on inhibitory control of behaviour in humans. Drug Alcohol Depend 67:157–167

    Article  PubMed  CAS  Google Scholar 

  • Fillmore MT, Rush CR, Hays L (2006) Acute effects of cocaine in two models of inhibitory control: implications of non-linear dose effects. Addiction 101:1323–1332

    Article  PubMed  Google Scholar 

  • Fletcher PJ (1993) A comparison of the effects of dorsal or median raphe injections of 8-OH-DPAT in three operant tasks measuring response inhibition. Behav Brain Res 54:187–197

    Article  PubMed  CAS  Google Scholar 

  • Hariri AR, Brown SM, Williamson DE et al (2006) Preference for immediate over delayed rewards is associated with magnitude of ventral striatal activity. J Neurosci 51:13213–13217

    Article  CAS  Google Scholar 

  • Francis MM, Papke RL (1996) Muscle-type nicotinic acetylcholine receptor delta subunit determines sensitivity to noncompetitive inhibitors, while gamma subunit regulates divalent permeability. Neuropharmacology 35:1547–1556

    Article  PubMed  CAS  Google Scholar 

  • Green L, Myerson J, McFadden E (1997) Rate of temporal discounting decreases with amount of reward. Mem Cogn 25:715–723

    Article  CAS  Google Scholar 

  • Green L, Myerson J, Holt DD, Slevin JR, Estle SJ (2004) Discounting of delayed food rewards in pigeons and rats: is there a magnitude effect? J Exp Anal Behav 81:39–50

    Article  PubMed  Google Scholar 

  • Grottick AJ, Higgins GA (2000) Effects of subtype selective nicotinic compounds on attention as assessed by the five-choice serial reaction time task. Behav Brain Res 117:197–208

    Article  PubMed  CAS  Google Scholar 

  • Grottick AJ, Higgins GA (2002) Assessing a vigilance decrement in aged rats: effects of pre-feeding, task manipulation, and psychostimulants. Psychopharmacology 164:33–41

    Article  PubMed  CAS  Google Scholar 

  • Grunberg NE, Bowen DJ, Winders SE (1986) Effects of nicotine on weight and food consumption in female rats. Psychopharmacology 90:101–105

    Article  PubMed  CAS  Google Scholar 

  • Hahn B, Shoaib M, Stolerman IP (2002) Effects of dopamine antagonists on nicotine-induced attentional enhancement. Behav Pharmacol 13:484–485

    Article  Google Scholar 

  • Hahn B, Shoaib M, Stolerman IP (2003) Nicotine-induced enhancement of attention in the five-choice serial reaction time task: the influence of task demands. Psychopharmacology 162:129–137

    Google Scholar 

  • Hand DJ, Fox AT, Reilly MP (2009) Differential effects of d-amphetamine on impulsive choice in spontaneously hypertensive Wisto-Kyoto rats. Behav Pharmacol 20:549–553

    Article  PubMed  CAS  Google Scholar 

  • Harrison AA, Everitt BJ, Robbins TW (1997) Central 5-HT depletion enhances impulsive responding without affecting the accuracy of attention performance: interactions with dopaminergic mechanisms. Psychopharmacology 133:329–342

    Article  PubMed  CAS  Google Scholar 

  • Harrison AA, Everitt BJ, Robbins TW (1999) Central serotonin depletion impairs both the acquisition and performance of a symmetrically reinforced go/no-go conditional visual discrimination. Behav Brain Res 100:99–112

    Article  PubMed  CAS  Google Scholar 

  • Harrison AA, Liem YTB, Markou A (2001) Fluoxetine combined with serotonin-1A receptor antagonist reversed reward deficits observed during nicotine and amphetamine withdrawal in rats. Neuropsychopharmacology 25:55–71

    Article  PubMed  CAS  Google Scholar 

  • Harvey SC, Luetje CW (1996) Determinants of competitive antagonist sensitivity on neuronal nicotinic receptor beta subunits. J Neurosci 16:3798–3806

    PubMed  CAS  Google Scholar 

  • Helms CM, Reeves JM, Mitchell SH (2006) Impact of strain and d-amphetamine on impulsivity (delay discounting) in inbred mice. Psychopharmacology 188:144–151

    Article  PubMed  CAS  Google Scholar 

  • Ho MY, Wogar MA, Bradshaw CM, Szabadi E (1997) Choice between delayed reinforcers: interaction between delay and deprivation level. Q J Exp Psychol 50:193–202

    Google Scholar 

  • Hoyle E, Genn RF, Fernandes C, Stolerman IP (2006) Impaired performance of alpha7 nicotinic receptor knockout mice in the five-choice serial reaction time task. Psychopharmacology 189:211–223

    Article  PubMed  CAS  Google Scholar 

  • Johnson MW, Bickel WK (2002) Within subject comparison of real and hypothetical money rewards in delay discounting. J Exp Anal Behav 77:129–146

    Article  PubMed  Google Scholar 

  • Keller JJ, Keller AB, Bowers BJ, Wehner JM (2005) Performance of α7 nicotinic receptor null mutants is impaired in appetitive learning measured in a signaled nose poke task. Behav Brain Res 162:143–152

    Article  PubMed  CAS  Google Scholar 

  • Khermin S, Body S, Mobini S, Ho MY et al (2002) Effects of quinolinic acid-induced lesions of the orbital prefrontal cortex on inter-temporal choice: a quantitative analysis. Psychopharmacology 165:9–7

    Article  CAS  Google Scholar 

  • Kirby NM, Petry NM (2004) Heroin and cocaine abusers have higher discount rates for delayed rewards than alcoholics or non-drug-using controls. Addiction 99:461–471

    Article  PubMed  Google Scholar 

  • Kirshenbaum A, Johnson MW, Schwarz SL et al (2009) Response disinhibition evoked by the administration of nicotine and nicotine-associated contextual cues. Drug Alcohol Depend 105:97–108

    Article  PubMed  CAS  Google Scholar 

  • Koob GF, Volkow ND (2010) Neurocircuitry of addiction. Neuropsychopharmacology 35:217–238

    Article  PubMed  Google Scholar 

  • Levin ED, Wilson W, Rose J, McEvoy J (1996) Nicotine—haloperidol interactions and cognitive performance in schizophrenics. Neuropsychopharmacology 15:429–436

    Article  PubMed  CAS  Google Scholar 

  • Levin ED, Conners CK, Silva D et al (1998) Transdermal nicotine effects on attention. Psychopharmacology 140:135–141

    Article  PubMed  CAS  Google Scholar 

  • Logue AW, Pena-Correal TE (1985) The effect of food deprivation on self-control. Behav Process 10:355–368

    Article  Google Scholar 

  • Mansvelder HD, Mertz M, Role LW (2009) Nicotinic modulation of synaptic transmission and plasticity in cortico-limbic circuits. Semin Cell Dev Biol 20:432–440

    Article  PubMed  CAS  Google Scholar 

  • Martin BR, Onaivi ES, Martin TJ et al (1989) What is the nature of mecamylamine of the central effects of nicotine. Biochem Pharmacol 38:3391–3397

    Article  PubMed  CAS  Google Scholar 

  • Mirza N, Stolerman IP (1998) Nicotine enhances sustained attention in the rat under specific task conditions. Psychopharmacology 138:266–274

    Article  PubMed  CAS  Google Scholar 

  • Mirza N, Bright JL (2001) Nicotine-induced enhancements in the five-choice serial reaction time task in rats are strain-dependent. Psychopharmacology 154:8–12

    Article  PubMed  CAS  Google Scholar 

  • Miyata G, Meguid MM, Fetissov SO et al (1999) Nicotine’s effect on hypothalamic neurotransmittors and appetite regulation. Surgery 126:255–263

    Article  PubMed  CAS  Google Scholar 

  • Monterosso J, Aron AR, Cordova X et al (2005) Deficits in response inhibition associated with chronic methamphetamine abuse. Drug Alcohol Depend 79:273–277

    Article  PubMed  Google Scholar 

  • Nashmi R, Lester HA (2006) CNS localization of neuronal nicotinic receptors. J Mol Neurosci 30:181–184

    Article  PubMed  CAS  Google Scholar 

  • Nisell M, Nomikos GG, Hertel P, Panagis G, Svensson TH (1996) Condition-independent sensitization of locomotor stimulation and mesocortical dopamine release following chronic nicotine treatment in the rat. Synapse 22:369–381

    Article  PubMed  CAS  Google Scholar 

  • Odum AL, Rainaud CP (2003) Discounting of delayed hypothetical money, alcohol, and food. Behav Process 64:305–313

    Article  Google Scholar 

  • Nayak SV, Rondé P, Spier AD et al (2000) Nicotinic receptors co-localize with 5-HT3 serotonin receptors on striatal nerve terminals. Neuropharmacology 39:2681–2690

    Article  PubMed  CAS  Google Scholar 

  • Paine TA, Olmstead MC (2004) Cocaine disrupts both behavioural inhibition and conditional discrimination in rats. Psychopharmacology 175:443–450

    PubMed  CAS  Google Scholar 

  • Pattij T, Janssen MCW, Vanderschuren LJMJ et al (2007) Involvement of dopamine D1 and D2 receptors in the nucleus accumbens core and shell in inhibitory response control. Psychopharmacology 191:587–598

    Article  PubMed  CAS  Google Scholar 

  • Pattij T, Vanderschuren LJMJ (2008) The neuropharmacology of impulsive behaviour. Tr Pharmacol Sci 29:192–199

    Article  CAS  Google Scholar 

  • Perry JL, Carroll ME (2008) The role of impulsive behavior in drug abuse. Psychopharmacology 1:1–26

    Article  CAS  Google Scholar 

  • Perry JL, Stairs DJ, Bardo MT (2008) Impulsive choice and environmental enrichment: effects of d-amphetamine and methylphenidate. Behav Brain Res 193:173–177

    Article  CAS  Google Scholar 

  • Picciotto MR, Zoli M, Rimondini R et al (1998) Acetylcholine receptors containing the β2 subunit are involved in the reinforcing properties of nicotine. Nature 391:173–177

    Article  PubMed  CAS  Google Scholar 

  • Popke EJ, Mayorga AJ, Fogle CM, Paule MG (2000) Effects of acute nicotine on several operant behaviors in rats. Pharmacol Biochem Behav 65:247–254

    Article  PubMed  CAS  Google Scholar 

  • Potter AS, Newhouse PA (2004) Effects of acute nicotine administration on behavioral inhibition in adolescents with attention-deficit/hyperactivity disorder. Psychopharmacology 176:182–194

    Article  PubMed  CAS  Google Scholar 

  • Reynolds B, Richards JB, Horn K, Karraker K (2004) Delay discounting and probability discounting as related to cigarette smoking status in adults. Behav Process 65:35–42

    Article  Google Scholar 

  • Reynolds B, Ortengren A, Richards JB, de Wit H (2006a) Dimensions of impulsive behavior: personality and behavioral measures. Pers Individ Differ 40:305–315

    Article  Google Scholar 

  • Reynolds B, Richards JB, de Wit H (2006b) Acute alcohol effects on the experiential discounting task (EDT) and a question based measure of delay discounting. Pharmacol Biochem Behav 83:194–202

    Article  PubMed  CAS  Google Scholar 

  • Reynolds B, Leraas K, Collins C et al (2009) Delay discounting by the children of smokers and nonsmokers. Drug Alcohol Depend 99:350–353

    Article  PubMed  Google Scholar 

  • Richards JB, Mitchell SH, de Wit H, Seiden LS (1997) Determination of discount functions in rats with an adjusting-amount procedure. J Exp Anal Behav 67:353–366

    Article  PubMed  CAS  Google Scholar 

  • Richards JB, Sabol KE, de Wit H (1999) Effects of methamphetamine on the adjusting amount procedure, a model of impulsive behaviour in rats. Psychopharmacology 146:432–439

    Article  PubMed  CAS  Google Scholar 

  • Robbins TW (2002) The 5-choice serial reaction time task: behavioural pharmacology and functional neurochemistry. Psychopharmacology 163:362–380

    Article  PubMed  CAS  Google Scholar 

  • Schilstrom B, Svensson HM, Svensson TH et al (1998) Nicotine and food induced dopamine release in the nucleus accumbens of the rat: putative role of alpha 7 nicotinic receptors in the ventral tegmental area. Neuroscience 85:1005–1009

    Article  PubMed  CAS  Google Scholar 

  • Spinella M (2002) Correlations between orbitofrontal cortex dysfunction and tobacco smoking. Addict Biol 7:381–384

    Article  PubMed  Google Scholar 

  • Stanis JJ, Avila HM, White MD, Gulley JM (2008) Dissociation between long-lasting behavioral sensitization to amphetamine and impulsive choice in rats performing a delay-discounting task. Psychopharmacology 199:539–548

    Article  PubMed  CAS  Google Scholar 

  • Stolerman IP, Fink R, Jarvik ME (1973) Acute and chronic tolerance to nicotine as measured by activity in rats. Psychopharmacology 30:329–342

    Article  CAS  Google Scholar 

  • Stolerman IP, Mirza NR, Hahn B, Shoaib M (2000) Nicotine in an animal model of attention. Eur J Pharmacol 393:147–154

    Article  PubMed  CAS  Google Scholar 

  • Talpos JC, Wilkinson LS, Robbins TW (2006) A comparison of multiple 5-HT receptors in two tasks measuring impulsivity. J Psychopharmacol 20:47–58

    Article  PubMed  CAS  Google Scholar 

  • Tsutsui-Kimura I, Ohmura Y, Izumi T et al (2010a) Nicotine provokes impulsive-like action by stimulating alpha 4 beta 2 nicotinic acetylcholine receptors in the infralimbic, but not in the prelimbic cortex. Psychopharmacology 209:351–359

    Article  PubMed  CAS  Google Scholar 

  • Tsutsui-Kimura I, Ohmura Y, Izumi T (2010b) Endogenous acetylcholine modulates impulsive action via alpha 4 beta 2 nicotinic acetylcholine receptors in rats. Eur J Pharmacol 641:148–153

    Article  PubMed  CAS  Google Scholar 

  • Van Gaalen MM, Brueggeman RJ, Bronius PFC et al (2006) Behavioral disinhibition requires dopamine receptor activation. Psychopharmacology 187:73–85

    Article  PubMed  CAS  Google Scholar 

  • Van Gaalen MM, Unger L, Jongen-Relo AL et al (2009) Amphetamine decreases behavioural inhibition by stimulation of dopamine D2, but D3 receptors. Behav Pharmacol 20:484–491

    Article  PubMed  CAS  Google Scholar 

  • Varanda WA, Aracave Y, Sherby SM et al (1985) The acetylcholine receptor of the neuromuscular junction recognizes mecamylamine as a noncompetitive anatagonist. Mol Pharmacol 28:128–13

    PubMed  CAS  Google Scholar 

  • Verdejo-Garcia AJ, Lawrmblence AJ, Clark L (2008) Impulsivity as a vulnerability marker for substance-use disorders: review of findings from high-risk research, problem gamblers and genetic associations studies. Neurosci Biobehav Rev 32:777–810

    Article  PubMed  Google Scholar 

  • Wade TR, Wit H, Richards JB (2000) Effects of dopaminergic drugs on delayed reward as a measure of impulsivity behaviour in rats. Psychopharmacology 150:90–101

    Article  PubMed  CAS  Google Scholar 

  • Winstanley CA, Theobald DEH, Cardinal RN, Robbins TW (2004) Contrasting roles of basolateral amygdala and orbitofrontal cortex in impulsive choice. J Neurosci 24:4718–4722

    Article  PubMed  CAS  Google Scholar 

  • Winstanley CA, Eagle DM, Robbins TW (2006) Behavioral models of impulsivity in relation to ADHD: translation between clinical and preclinical studies. Clin Psychol Rev 26:379–395

    Article  PubMed  Google Scholar 

  • Wogar MA, Bradshaw CM, Szabadi E (1992) Choice between delayed reinforcers in an adjusting delay schedule—the effects of absolute reinforce size and deprivation level. Q J Exp Psychol 45B:1–13

    Google Scholar 

  • Woolterton JRA, Pidoplichko VI, Broide RS, Dani JA (2003) Differential desensitzation and distribution of nicotinic acetylcholine receptor subtypes in midbrain dopamine neurons. J Neurosci 23:3176–3185

    Google Scholar 

  • Yakir A, Rigbi A, Kanyas K et al (2007) Why do young women smoke? III. Attention and impulsivity as neurocognitive predisposing factors. Eur Neuropsychopharmacol 17:339–351

    Article  PubMed  CAS  Google Scholar 

  • Zhang L, Meguid MM, Miyata G et al (2001) Role of hypothalamic monoamines in nicotine-induced anorexia in menopausal rats. Surgery 130:133–142

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Katerina Zoe Kolokotroni.

Electronic supplementary materials

Below is the link to the electronic supplementary material.

Table 1

Experiment 1. The effect of acute mecamylamine on performance in the symmetrically reinforced go/no-go task (DOC 49 kb)

Table 2

Experiment 1. The effect of co-administration of nicotine and mecamylamine on performance in the symmetrically reinforced go/no-go task (DOC 48 kb)

Table 3

Experiment 2. The effect of acute mecamylamine on performance in the delayed reward task (DOC 48 kb)

Table 4

Experiment 2. The effect of co-administration of nicotine and mecamylmaine on performance in the delayed reward task (DOC 49 kb)

Table 5

Experiment 3. The effects of acute alterations in motivation for food reward on performance in the symmetrically reinforced go/no-go task (DOC 51 kb)

Table 6

Experiment 3. The effects of acute alterations in motivation for food reward on performance in the delayed reward task (DOC 50 kb)

Fig. 1

ab Experiment 1. Accuracy of responding: the effects of acute nicotine (a) and combined nicotine and mecamylamine treatment (b) on percentage correct total trials. Each bar represents the mean percentage correct trials ± SEM. *p < 0.05; **p < 0.01 (as compared to vehicle control); ##p < 0.01 (as compared nicotine treatment alone) (DOC 79 kb)

Fig. 2

ac Experiment 2. Choice behaviour: the effects of acute nicotine (a), acute mecamylamine (b) and combined nicotine and mecamylamine treatment (c) on overall percentage choice of delayed reward. Each bar represents the mean percentage choice ± SEM. *p < 0.05; **p < 0.01; ***p < 0.001 (as compared to vehicle control). †p < 0.05; ††p < 0.01 (as compared to the highest nicotine dose (0.5 mg/kg)). §p < 0.05 (as compared to the 0.3 mg/kg mecamylamine dose (0.3 mg/kg)). #p < 0.05; ##p < 0.01 (as compared to the combination treatment of saline and nicotine (0.3/0.5mg/kg)) (DOC 93 kb)

Fig. 3

Experiment 3. Choice behaviour: the effects of food restriction on percentage choice of delayed reward across delay conditions. Each point represents the mean percentage choice ± SEM. *p < 0.05; **p < 0.01; ***p < 0.001 (as compared to percentage choice at baseline) (DOC 62 kb)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Kolokotroni, K.Z., Rodgers, R.J. & Harrison, A.A. Acute nicotine increases both impulsive choice and behavioural disinhibition in rats. Psychopharmacology 217, 455–473 (2011). https://doi.org/10.1007/s00213-011-2296-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00213-011-2296-2

Keywords

Navigation