Skip to main content
Log in

Pharmacological and behavioral characterization of the 5-HT2A receptor in C57BL/6N mice

  • Original Investigation
  • Published:
Psychopharmacology Aims and scope Submit manuscript

Abstract

Rationale

The serotonin (5-HT) 2A receptor is implicated in numerous psychiatric disorders, making it an important, clinically relevant target. Despite the availability of transgenic mouse lines, the native mouse 5-HT2A receptor is not well-characterized.

Objectives

The goals of the current study were to determine 5-HT2A and 5-HT2C receptor densities in mouse cortex, establish a pharmacological profile of the mouse 5-HT2A receptor, and determine the effects of chronic drug treatment on 5-HT2A receptor density and 5-HT2A receptor-mediated behavior.

Methods

Receptor densities were determined in cortex and frontal cortex via saturation binding assays using [3H]ketanserin or [3H]mesulergine. A pharmacological profile was established by displacing [3H]ketanserin binding with several ligands. Chronic treatment with 5-HT2A/2C receptor agonist, 2,5-dimethoxy-4-iodoamphetamine (DOI), 5-HT2A receptor antagonist, MDL 11939, or vehicle was followed by 5-HT2A receptor density determination. Head twitch responses (HTRs) were counted on select days.

Results

Mice had high 5-HT2A, but low 5-HT2C receptor densities. Ligand binding affinities for mouse 5-HT2A receptors correlated with rat, but not rabbit or human, affinities. Chronically DOI-treated mice displayed reduced HTRs and 5-HT2A receptor density compared to saline-treated mice. Receptor density was unchanged following chronic treatment with MDL 11939.

Conclusions

The current study provides some basic information about mouse 5-HT2A and 5-HT2C receptors and provides comparisons to rats, rabbits, and humans. The current chronic agonist treatment study demonstrated an important similarity between the 5-HT2A receptor in mice, rats, and rabbits, while antagonist treatment revealed an interesting difference from previous studies in rabbits.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  • Aghajanian GK, Marek GJ (1999) Serotonin and hallucinogens. Neuropsychopharmacology 21(2 Suppl):16S–23S

    PubMed  CAS  Google Scholar 

  • Aloyo VJ, Harvey JA (2000) Antagonist binding at 5-HT(2A) and 5-HT(2C) receptors in the rabbit: high correlation with the profile for the human receptors. Eur J Pharmacol 406(2):163–169

    Article  PubMed  CAS  Google Scholar 

  • Aloyo VJ, Dave KD, Rahman T, Harvey JA (2001) Selective and divergent regulation of cortical 5-HT(2A) receptors in rabbit. J Pharmacol Exp Ther 299(3):1066–1072

    PubMed  CAS  Google Scholar 

  • Aloyo VJ, Berg KA, Spampinato U, Clarke WP, Harvey JA (2009) Current status of inverse agonism at serotonin2A (5-HT2A) and 5-HT2C receptors. Pharmacol Ther 121(2):160–173

    Article  PubMed  CAS  Google Scholar 

  • Anji A, Kumari M, Sullivan Hanley NR, Bryan GL, Hensler JG (2000) Regulation of 5-HT(2A) receptor mRNA levels and binding sites in rat frontal cortex by the agonist DOI and the antagonist mianserin. Neuropharmacology 39(11):1996–2005

    Article  PubMed  CAS  Google Scholar 

  • Battaglia G, Shannon M, Borgundvaag B, Titeler M (1983) pH-dependent modulation of agonist interactions with [3H]-ketanserin-labelled S2 serotonin receptors. Life Sci 33(20):2011–2016

    Article  PubMed  CAS  Google Scholar 

  • Battaglia G, Shannon M, Titeler M (1984) Guanyl nucleotide and divalent cation regulation of cortical S2 serotonin receptors. J Neurochem 43(5):1213–1219

    Article  PubMed  CAS  Google Scholar 

  • Berg KA, Harvey JA, Spampinato U, Clarke WP (2008) Physiological and therapeutic relevance of constitutive activity of 5-HT 2A and 5-HT 2C receptors for the treatment of depression. Prog Brain Res 172:287–305

    Article  PubMed  CAS  Google Scholar 

  • Blackshear MA, Sanders-Bush E (1982) Serotonin receptor sensitivity after acute and chronic treatment with mianserin. J Pharmacol Exp Ther 221(2):303–308

    PubMed  CAS  Google Scholar 

  • Bonhaus DW, Bach C, DeSouza A, Salazar FH, Matsuoka BD, Zuppan P, Chan HW, Eglen RM (1995) The pharmacology and distribution of human 5-hydroxytryptamine2B (5-HT2B) receptor gene products: comparison with 5-HT2A and 5-HT2C receptors. Br J Pharmacol 115(4):622–628

    PubMed  CAS  Google Scholar 

  • Braden MR, Nichols DE (2007) Assessment of the roles of serines 5.43(239) and 5.46(242) for binding and potency of agonist ligands at the human serotonin 5-HT2A receptor. Mol Pharmacol 72(5):1200–1209

    Article  PubMed  CAS  Google Scholar 

  • Bradford MM (1976) A rapid and sensitive method for the quantitation of microgram quantities of protein utilizing the principle of protein-dye binding. Anal Biochem 72:248–254

    Article  PubMed  CAS  Google Scholar 

  • Canal CE, Olaghere da Silva UB, Gresch PJ, Watt EE, Sanders-Bush E, Airey DC (2010) The serotonin 2C receptor potently modulates the head-twitch response in mice induced by a phenethylamine hallucinogen. Psychopharmacology (Berl) 209(2):163–174

    Article  CAS  Google Scholar 

  • Chaouloff F, Baudrie V, Coupry I (1993) Behavioural and biochemical evidence that glucocorticoids are not involved in DOI-elicited 5-HT2 receptor down-regulation. Eur J Pharmacol 249(1):117–120

    Article  PubMed  CAS  Google Scholar 

  • Chaouloff F, Kulikov A, Mormède P (1997) Repeated DOI and SR 46349B treatments do not affect elevated plus-maze anxiety despite opposite effects on cortical 5-HT2A receptors. Eur J Pharmacol 334(1):25–29

    Article  PubMed  CAS  Google Scholar 

  • Cheng Y, Prusoff WH (1973) Relationship between the inhibition constant (K1) and the concentration of inhibitor which causes 50 per cent inhibition (I50) of an enzymatic reaction. Biochem Pharmacol 22(23):3099–3108

    Article  PubMed  CAS  Google Scholar 

  • Darmani NA, Martin BR, Glennon RA (1990) Withdrawal from chronic treatment with (+/−)-DOI causes super-sensitivity to 5-HT2 receptor-induced head-twitch behaviour in mice. Eur J Pharmacol 186(1):115–118

    Article  PubMed  CAS  Google Scholar 

  • Dave KD, Harvey JA, Aloyo VJ (2007) The time-course for up- and down-regulation of the cortical 5-hydroxytryptamine (5-HT)2A receptor density predicts 5-HT2A receptor-mediated behavior in the rabbit. J Pharmacol Exp Ther 323(1):327–335

    Article  PubMed  CAS  Google Scholar 

  • Dursun SM, Handley SL (1996) Similarities in the pharmacology of spontaneous and DOI-induced head-shakes suggest 5HT2A receptors are active under physiological conditions. Psychopharmacology (Berl) 128(2):198–205

    Article  CAS  Google Scholar 

  • El Mansari M, Blier P (2006) Mechanisms of action of current and potential pharmacotherapies of obsessive-compulsive disorder. Prog Neuropsychopharmacol Biol Psychiatry 30(3):362–373

    Article  PubMed  Google Scholar 

  • Fone KC, Austin RH, Topham IA, Kennett GA, Punhani T (1998) Effect of chronic m-CPP on locomotion, hypophagia, plasma corticosterone and 5-HT2C receptor levels in the rat. Br J Pharmacol 123(8):1707–1715

    Article  PubMed  CAS  Google Scholar 

  • Fox MA, French HT, Laporte JL, Blackler AR, Murphy DL (2010) The serotonin 5-HT(2A) receptor agonist TCB-2: a behavioral and neurophysiological analysis. Psychopharmacology 212(1):13–23

    Article  PubMed  CAS  Google Scholar 

  • González-Maeso J, Yuen T, Ebersole BJ, Wurmbach E, Lira A, Zhou M, Weisstaub N, Hen R, Gingrich JA, Sealfon SC (2003) Transcriptome fingerprints distinguish hallucinogenic and nonhallucinogenic 5-hydroxytryptamine 2A receptor agonist effects in mouse somatosensory cortex. J Neurosci 23(26):8836–8843

    PubMed  Google Scholar 

  • González-Maeso J, Weisstaub NV, Zhou M, Chan P, Ivic L, Ang R, Lira A, Bradley-Moore M, Ge Y, Zhou Q, Sealfon SC, Gingrich JA (2007) Hallucinogens recruit specific cortical 5-HT(2A) receptor-mediated signaling pathways to affect behavior. Neuron 53(3):439–452

    Article  PubMed  Google Scholar 

  • Goodwin GM, Green AR, Johnson P (1984) 5-HT2 receptor characteristics in frontal cortex and 5-HT2 receptor-mediated head-twitch behaviour following antidepressant treatment to mice. Br J Pharmacol 83(1):235–242

    PubMed  CAS  Google Scholar 

  • Gray JA, Roth BL (2001) Paradoxical trafficking and regulation of 5-HT(2A) receptors by agonists and antagonists. Brain Res Bull 56(5):441–451

    Article  PubMed  CAS  Google Scholar 

  • Hagen JD, Pierce PA, Peroutka SJ (1994) Differential binding of ergot compounds to human versus rat 5-HT2 cortical receptors. Biol Signals 3(5):223–229

    Article  PubMed  CAS  Google Scholar 

  • Harvey JA (2003) Role of the serotonin 5-HT(2A) receptor in learning. Learn Mem 10(5):355–362

    Article  PubMed  Google Scholar 

  • Hayslett RL, Tizabi Y (2005) Effects of donepezil, nicotine and haloperidol on the central serotonergic system in mice: implications for Tourette’s syndrome. Pharmacol Biochem Behav 81(4):879–886

    Article  PubMed  CAS  Google Scholar 

  • Heal DJ, Philpot J, Molyneux SG, Metz A (1985) Intracerebroventricular administration of 5, 7-dihydroxytryptamine to mice increases both head-twitch response and the number of cortical 5-HT2 receptors. Neuropharmacology 24(12):1201–1205

    Article  PubMed  CAS  Google Scholar 

  • Hensler JG, Truett KA (1998) Effect of chronic serotonin-2 receptor agonist or antagonist administration on serotonin-1A receptor sensitivity. Neuropsychopharmacology 19(5):354–364

    Article  PubMed  CAS  Google Scholar 

  • Hoyer D, Engel G, Kalkman HO (1985) Molecular pharmacology of 5-HT1 and 5-HT2 recognition sites in rat and pig brain membranes: radioligand binding studies with [3H]5-HT, [3H]8-OH-DPAT, (-)[125I]iodocyanopindolol, [3H]mesulergine and [3H]ketanserin. Eur J Pharmacol 118(1–2):13–23

    Article  PubMed  CAS  Google Scholar 

  • Hoyer D, Pazos A, Probst A, Palacios JM (1986) Serotonin receptors in the human brain. II. Characterization and autoradiographic localization of 5-HT1C and 5-HT2 recognition sites. Brain Res 376(1):97–107

    Article  PubMed  CAS  Google Scholar 

  • Hulihan-Giblin BA, Park YD, Aulakh CS (1994) Differential effects of chronic antidepressant treatment on 5-HT1C receptor binding sites in Wistar rat brain. Eur J Pharmacol 263(1–2):213–216

    Article  PubMed  CAS  Google Scholar 

  • Johnson MP, Loncharich RJ, Baez M, Nelson DL (1994) Species variations in transmembrane region V of the 5-hydroxytryptamine type 2A receptor alter the structure–activity relationship of certain ergolines and tryptamines. Mol Pharmacol 45(2):277–286

    PubMed  CAS  Google Scholar 

  • Johnson MP, Siegel BW, Carr AA (1996) [3H]MDL 100, 907: a novel selective 5-HT2A receptor ligand. Naunyn Schmiedebergs Arch Pharmacol 354(2):205–209

    Article  PubMed  CAS  Google Scholar 

  • Johnson MP, Wainscott DB, Lucaites VL, Baez M, Nelson DL (1997) Mutations of transmembrane IV and V serines indicate that all tryptamines do not bind to the rat 5-HT2A receptor in the same manner. Brain Res Mol Brain Res 49(1–2):1–6

    Article  PubMed  CAS  Google Scholar 

  • Kao HT, Adham N, Olsen MA, Weinshank RL, Branchek TA, Hartig PR (1992) Site-directed mutagenesis of a single residue changes the binding properties of the serotonin 5-HT2 receptor from a human to a rat pharmacology. FEBS Lett 307(3):324–328

    Article  PubMed  CAS  Google Scholar 

  • Leonhardt S, Gorospe E, Hoffman BJ, Teitler M (1992) Molecular pharmacological differences in the interaction of serotonin with 5-hydroxytryptamine1C and 5-hydroxytryptamine2 receptors. Mol Pharmacol 42(2):328–335

    PubMed  CAS  Google Scholar 

  • Leysen JE, Janssen PF, Niemegeers CJ (1989) Rapid desensitization and down-regulation of 5-HT2 receptors by DOM treatment. Eur J Pharmacol 163(1):145–149

    Article  PubMed  CAS  Google Scholar 

  • Leysen JE, Niemegeers CJ, Van Nueten JM, Laduron PM (1982) [3H]Ketanserin (R 41 468), a selective 3H-ligand for serotonin2 receptor binding sites. Binding properties, brain distribution, and functional role. Mol Pharmacol 21(2):301–314

    PubMed  CAS  Google Scholar 

  • Leysen JE, Eens A, Gommeren W, van Gompel P, Wynants J, Janssen PA (1988) Identification of nonserotonergic [3H]ketanserin binding sites associated with nerve terminals in rat brain and with platelets; relation with release of biogenic amine metabolites induced by ketanserin- and tetrabenazine-like drugs. J Pharmacol Exp Ther 244(1):310–321

    PubMed  CAS  Google Scholar 

  • Leysen JE, Pauwels PJ (1990) 5-HT2 receptors, roles and regulation. Ann NY Acad Sci 600:183–191, discussion 192–193

    Article  PubMed  CAS  Google Scholar 

  • López-Giménez JF, Vilaró MT, Palacios JM, Mengod G (1998) [3H]MDL 100, 907 labels 5-HT2A serotonin receptors selectively in primate brain. Neuropharmacology 37(9):1147–1158

    Article  PubMed  Google Scholar 

  • López-Giménez JF, Tecott LH, Palacios JM, Mengod G, Vilaró MT (2002) Serotonin 5- HT (2C) receptor knockout mice: autoradiographic analysis of multiple serotonin receptors. J Neurosci Res 67(1):69–85

    Article  PubMed  Google Scholar 

  • Lyon RA, Davis KH, Titeler M (1987) 3H-DOB (4-bromo-2, 5-dimethoxyphenylisopropylamine) labels a guanyl nucleotide-sensitive state of cortical 5-HT2 receptors. Mol Pharmacol 31(2):194–199

    PubMed  CAS  Google Scholar 

  • Marek GJ, Carpenter LL, McDougle CJ, Price LH (2003) Synergistic action of 5-HT2A antagonists and selective serotonin reuptake inhibitors in neuropsychiatric disorders. Neuropsychopharmacology 28(2):402–412

    Article  PubMed  CAS  Google Scholar 

  • McKenna DJ, Peroutka SJ (1989) Differentiation of 5-hydroxytryptamine2 receptor subtypes using 125I-R-(−)2, 5-dimethoxy-4-iodo-phenylisopropylamine and 3H-ketanserin. J Neurosci 9(10):3482–3490

    PubMed  CAS  Google Scholar 

  • McPherson GA (1985) Kinetic, ebda, ligand, lowry: a collection of radioligand binding analysis programmes. Biosoft, Cambridge, MA

  • Meltzer HY, Matsubara S, Lee JC (1989) Classification of typical and atypical antipsychotic drugs on the basis of dopamine D-1, D-2 and serotonin2 pKi values. J Pharmacol Exp Ther 251(1):238–246

    PubMed  CAS  Google Scholar 

  • Metz A, Heal DJ (1986) In mice repeated administration of electroconvulsive shock or desmethylimipramine produces rapid alterations in 5-HT2-mediated head-twitch responses and cortical 5-HT2 receptor number. Eur J Pharmacol 126(1–2):159–162

    Article  PubMed  CAS  Google Scholar 

  • Michelsen KA, Prickaerts J, Steinbusch HWM (2008) The dorsal raphe nucleus and serotonin: implications for neuroplasticity linked to major depression and Alzheimer’s disease. Prog Brain Res 172:233–264

    Article  PubMed  CAS  Google Scholar 

  • Neale RF, Fallon SL, Boyar WC, Wasley JW, Martin LL, Stone GA, Glaeser BS, Sinton CM, Williams M (1987) Biochemical and pharmacological characterization of CGS 12066B, a selective serotonin-1B agonist. Eur J Pharmacol 136(1):1–9

    Article  PubMed  CAS  Google Scholar 

  • Nelson DL, Lucaites VL, Audia JE, Nissen JS, Wainscott DB (1993) Species differences in the pharmacology of the 5-hydroxytryptamine2 receptor: structurally specific differentiation by ergolines and tryptamines. J Pharmacol Exp Ther 265(3):1272–1279

    PubMed  CAS  Google Scholar 

  • Pazos A, Hoyer D, Palacios JM (1984) Mesulergine, a selective serotonin-2 ligand in the rat cortex, does not label these receptors in porcine and human cortex: evidence for species differences in brain serotonin-2 receptors. Eur J Pharmacol 106(3):531–538

    Article  PubMed  CAS  Google Scholar 

  • Pazos A, Cortés R, Palacios JM (1985) Quantitative autoradiographic mapping of serotonin receptors in the rat brain. II. Serotonin-2 receptors. Brain Res 346(2):231–249

    Article  PubMed  CAS  Google Scholar 

  • Pazos A, Probst A, Palacios JM (1987) Serotonin receptors in the human brain–IV. Autoradiographic mapping of serotonin-2 receptors. Neuroscience 21(1):123–139

    Article  PubMed  CAS  Google Scholar 

  • Peroutka SJ, Lebovitz RM, Snyder SH (1981) Two distinct central serotonin receptors with different physiological functions. Science 212(4496):827–829

    Article  PubMed  CAS  Google Scholar 

  • Pompeiano M, Palacios JM, Mengod G (1994) Distribution of the serotonin 5-HT2 receptor family mRNAs: comparison between 5-HT2A and 5-HT2C receptors. Brain Res Mol Brain Res 23(1–2):163–178

    Article  PubMed  CAS  Google Scholar 

  • Pranzatelli MR, Balletti J (1992) Serotonin receptors in human neuroblastoma: a possible biologic tumor marker. Exp Neurol 115(3):423–427

    Article  PubMed  CAS  Google Scholar 

  • Richtand NM, Welge JA, Logue AD, Keck PE, Strakowski SM, McNamara RK (2008) Role of serotonin and dopamine receptor binding in antipsychotic efficacy. Prog Brain Res 172:155–175

    Article  PubMed  CAS  Google Scholar 

  • Rinaldi-Carmona M, Congy C, Santucci V, Simiand J, Gautret B, Neliat G, Labeeuw B, Le Fur G, Soubrie P, Breliere JC (1992) Biochemical and pharmacological properties of SR 46349B, a new potent and selective 5-hydroxytryptamine2 receptor antagonist. J Pharmacol Exp Ther 262(2):759–768

    PubMed  CAS  Google Scholar 

  • Rinaldi-Carmona M, Congy C, Simiand J, Oury-Donat F, Soubrie P, Breliere JC, Le Fur G (1993a) Repeated administration of SR 46349B, a selective 5-hydroxytryptamine2 antagonist, up-regulates 5-hydroxytryptamine2 receptors in mouse brain. Mol Pharmacol 43(1):84–89

    PubMed  CAS  Google Scholar 

  • Rinaldi-Carmona M, Bouaboula M, Congy C, Oury-Donat F, Simiand J, Shire D, Casellas P, Soubrié P, Brelière JC, Le Fur G (1993b) Up-regulation of 5-HT2 receptors in the rat brain by repeated administration of SR 46349B, a selective 5-HT2 receptor antagonist. Eur J Pharmacol 246(1):73–80

    Article  PubMed  CAS  Google Scholar 

  • Rioux A, Fabre V, Lesch KP, Moessner R, Murphy DL, Lanfumey L, Hamon M, Martres MP (1999) Adaptive changes of serotonin 5-HT2A receptors in mice lacking the serotonin transporter. Neurosci Lett 262(2):113–116

    Article  PubMed  CAS  Google Scholar 

  • Roth BL, Ciaranello RD, Meltzer HY (1992) Binding of typical and atypical antipsychotic agents to transiently expressed 5-HT1C receptors. J Pharmacol Exp Ther 260(3):1361–1365

    PubMed  CAS  Google Scholar 

  • Sadzot B, Baraban JM, Glennon RA, Lyon RA, Leonhardt S, Jan CR, Titeler M (1989) Hallucinogenic drug interactions at human brain 5-HT2 receptors: implications for treating LSD-induced hallucinogenesis. Psychopharmacology (Berl) 98(4):495–499

    Article  CAS  Google Scholar 

  • Schotte A, Maloteaux JM, Laduron PM (1983) Characterization and regional distribution of serotonin S2-receptors in human brain. Brain Res 276(2):231–235

    Article  PubMed  CAS  Google Scholar 

  • Schreiber R, Brocco M, Audinot V, Gobert A, Veiga S, Millan MJ (1995) (1-(2, 5-dimethoxy-4 iodophenyl)-2-aminopropane)-induced head-twitches in the rat are mediated by 5-hydroxytryptamine (5-HT) 2A receptors: modulation by novel 5-HT2A/2C antagonists, D1 antagonists and 5-HT1A agonists. J Pharmacol Exp Ther 273(1):101–112

    PubMed  CAS  Google Scholar 

  • Smith RL, Barrett RJ, Sanders-Bush E (1999) Mechanism of tolerance development to 2,5-dimethoxy-4-iodoamphetamine in rats: down-regulation of the 5-HT2A, but not 5-HT2C, receptor. Psychopharmacology (Berl) 144(3):248–254

    Article  CAS  Google Scholar 

  • Steeves TDL, Fox SH (2008) Neurobiological basis of serotonin–dopamine antagonists in the treatment of Gilles de la Tourette syndrome. Prog Brain Res 172:495–513

    Article  PubMed  CAS  Google Scholar 

  • Van Oekelen D, Luyten WHML, Leysen JE (2003) 5-HT2A and 5-HT2C receptors and their atypical regulation properties. Life Sci 72(22):2429–2449

    Article  PubMed  Google Scholar 

  • Wainscott DB, Lucaites VL, Kursar JD, Baez M, Nelson DL (1996) Pharmacologic characterization of the human 5-hydroxytryptamine2B receptor: evidence for species differences. J Pharmacol Exp Ther 276(2):720–727

    PubMed  CAS  Google Scholar 

  • Weber JT, O’Connor MF, Hayataka K, Colson N, Medora R, Russo EB, Parker KK (1997) Activity of parthenolide at 5HT2A receptors. J Nat Prod 60(6):651–653

    Article  PubMed  CAS  Google Scholar 

  • Weiss KC, Kim DY, Pawson CT, Cordes SP (2003) A genetic screen for mouse mutations with defects in serotonin responsiveness. Brain Res Mol Brain Res 115(2):162–172

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgments

The authors wish to thank Dr. James Barrett for reviewing this manuscript, Dr. Anthony Romano for assistance with statistical analysis, Dr. Laura Scarlota for assistance dissecting mouse cortices and frontal cortices, and the two anonymous reviewers of this article, whose comments, suggestions, and criticism helped improve this manuscript considerably.

Funding support provided by the Department of Pharmacology and Physiology, Drexel University College of Medicine.

The authors have no conflicts of interest to declare. The authors have full control of all primary data and agree to allow the journal to review the data if desired.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to John P. Dougherty.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Dougherty, J.P., Aloyo, V.J. Pharmacological and behavioral characterization of the 5-HT2A receptor in C57BL/6N mice. Psychopharmacology 215, 581–593 (2011). https://doi.org/10.1007/s00213-011-2207-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00213-011-2207-6

Keywords

Navigation