Skip to main content
Log in

Sustained stress-induced changes in mice as a model for chronic depression

  • Original Investigation
  • Published:
Psychopharmacology Aims and scope Submit manuscript

Abstract

Rationale

Major depression is a chronic disabling disorder, often preceded by stress. Despite emerging clinical interest in mechanisms perpetuating episodes of depression and/or establishing increased vulnerability for relapse, little attention has been paid to address these aspects in experimental models. Here, we studied the long-term neuroadaptive effects of chronic mild stress (CMS) as well as the effectiveness of a course of an antidepressant treatment.

Methods

CMS was applied for 6 weeks, and paroxetine was administered from the third week and continued for 2 weeks thereafter. In order to validate our CMS procedure, we first studied short-term (24 h after CMS) hippocampal cell proliferation and neurogenesis, along with anhedonic-like behaviour. Subsequently, we examined the long-term (one month after CMS) anhedonia, hippocampal neurogenesis, the regulation of c-Fos immunoreactivity and neurotransmitter levels in different areas as well as cortical spine density and hippocampal expression of synaptic proteins.

Results

CMS induced a decrease in short-term neurogenesis that was fully recovered in the long term. In addition, CMS-induced lasting anhedonia and region-specific changes in neuronal activity (c-Fos immunoreactivity) and neurotransmitter (glutamate and GABA) levels. Repeated paroxetine reverted these effects with the exception of decreased neuronal activity in the dentate gyrus (DG) and GABA levels in the ventral hippocampus. Moreover, CMS downregulated the GAD65 and VGLUT1 expressions.

Conclusion

This study shows region-specific long-term neurobiological adaptations induced by CMS and residual hippocampal signs after paroxetine treatment. We propose the use of this model to study molecular mechanisms involved in chronic depression and vulnerability for relapse.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

Similar content being viewed by others

References

  • Airan RD, Meltzer LA, Roy M, Gong Y, Chen H, Deisseroth K (2007) High-speed imaging reveals neurophysiological links to behavior in an animal model of depression. Science 317:819–823

    Article  CAS  PubMed  Google Scholar 

  • Aisa B, Elizalde N, Tordera R, Lasheras B, Del Rio J, Ramirez MJ (2009) Effects of neonatal stress on markers of synaptic plasticity in the hippocampus: implications for spatial memory. Hippocampus 19:1222–1231

    Article  CAS  PubMed  Google Scholar 

  • Alonso R, Griebel G, Pavone G, Stemmelin J, Le Fur G, Soubrie P (2004) Blockade of CRF(1) or V(1b) receptors reverses stress-induced suppression of neurogenesis in a mouse model of depression. Mol Psychiatry 9(278–86):224

    Article  Google Scholar 

  • Amat J, Baratta MV, Paul E, Bland ST, Watkins LR, Maier SF (2005) Medial prefrontal cortex determines how stressor controllability affects behavior and dorsal raphe nucleus. Nat Neurosci 8:365–371

    Article  CAS  PubMed  Google Scholar 

  • Banasr M, Chowdhury GM, Terwilliger R, Newton SS, Duman RS, Behar KL, Sanacora G (2008) Glial pathology in an animal model of depression: reversal of stress-induced cellular, metabolic and behavioral deficits by the glutamate-modulating drug riluzole. Mol Psychiatry (Epub ahead of print)

  • Bannerman DM, Rawlins JN, McHugh SB, Deacon RM, Yee BK, Bast T, Zhang WN, Pothuizen HH, Feldon J (2004) Regional dissociations within the hippocampus–memory and anxiety. Neurosci Biobehav Rev 28:273–283

    Article  CAS  PubMed  Google Scholar 

  • Behnken A, Schoning S, Gerss J, Konrad C, de Jong-Meyer R, Zwanzger P, Arolt V (2009) Persistent non-verbal memory impairment in remitted major depression—Caused by encoding deficits? J Affect Disord (Epub ahead of print)

  • Bessa JM, Ferreira D, Melo I, Marques F, Cerqueira JJ, Palha JA, Almeida OF, Sousa N (2009) The mood-improving actions of antidepressants do not depend on neurogenesis but are associated with neuronal remodeling. Mol Psychiatry 14(764–73):739

    Article  CAS  Google Scholar 

  • Bhagwagar Z, Cowen PJ (2008) ‘It’s not over when it’s over’: persistent neurobiological abnormalities in recovered depressed patients. Psychol Med 38:307–313

    Article  CAS  PubMed  Google Scholar 

  • Bhagwagar Z, Wylezinska M, Jezzard P, Evans J, Boorman E, MM P, JC P (2008) Low GABA concentrations in occipital cortex and anterior cingulate cortex in medication-free, recovered depressed patients. Int J Neuropsychopharmacol 11:255–260

    Article  CAS  PubMed  Google Scholar 

  • Brambilla P, Perez J, Barale F, Schettini G, Soares JC (2003) GABAergic dysfunction in mood disorders. Mol Psychiatry 8(721–37):715

    Article  Google Scholar 

  • Brezun JM, Daszuta A (2000) Serotonin may stimulate granule cell proliferation in the adult hippocampus, as observed in rats grafted with foetal raphe neurons. Eur J Neurosci 12:391–396

    Article  CAS  PubMed  Google Scholar 

  • Caetano SC, Hatch JP, Brambilla P, Sassi RB, Nicoletti M, Mallinger AG, Frank E, Kupfer DJ, Keshavan MS, Soares JC (2004) Anatomical MRI study of hippocampus and amygdala in patients with current and remitted major depression. Psychiatry Res 132:141–147

    Article  PubMed  Google Scholar 

  • Coe CL, Kramer M, Czeh B, Gould E, Reeves AJ, Kirschbaum C, Fuchs E (2003) Prenatal stress diminishes neurogenesis in the dentate gyrus of juvenile rhesus monkeys. Biol Psychiatry 54:1025–1034

    Article  CAS  PubMed  Google Scholar 

  • Czeh B, Lucassen PJ (2007) What causes the hippocampal volume decrease in depression? Are neurogenesis, glial changes and apoptosis implicated? Eur Arch Psychiatry Clin Neurosci 257:250–260

    Article  PubMed  Google Scholar 

  • David DJ, Samuels BA, Rainer Q, Wang JW, Marsteller D, Mendez I, Drew M, Craig DA, Guiard BP, Guilloux JP, Artymyshyn RP, Gardier AM, Gerald C, Antonijevic IA, Leonardo ED, Hen R (2009) Neurogenesis-dependent and -independent effects of fluoxetine in an animal model of anxiety/depression. Neuron 62:479–493

    Article  CAS  PubMed  Google Scholar 

  • Elizalde N, Gil-Bea FJ, Ramirez MJ, Aisa B, Lasheras B, Del Rio J, Tordera RM (2008) Long-lasting behavioral effects and recognition memory deficit induced by chronic mild stress in mice: effect of antidepressant treatment. Psychopharmacology (Berl) 199:1–14

    Article  CAS  Google Scholar 

  • Fatemi SH, Stary JM, Earle JA, Araghi-Niknam M, Eagan E (2005) GABAergic dysfunction in schizophrenia and mood disorders as reflected by decreased levels of glutamic acid decarboxylase 65 and 67 kDa and Reelin proteins in cerebellum. Schizophr Res 72:109–122

    Article  PubMed  Google Scholar 

  • Frodl TS, Koutsouleris N, Bottlender R, Born C, Jager M, Scupin I, Reiser M, Moller HJ, Meisenzahl EM (2008) Depression-related variation in brain morphology over 3 years: effects of stress? Arch Gen Psychiatry 65:1156–1165

    Article  PubMed  Google Scholar 

  • Gabbott PL, Somogyi J (1984) The ‘single’ section Golgi-impregnation procedure: methodological description. J Neurosci Methods 11:221–230

    Article  CAS  PubMed  Google Scholar 

  • Garcia-Garcia AL, Elizalde N, Matrov D, Harro J, Wojcik SM, Venzala E, Ramirez MJ, Del Rio J, Tordera RM (2009) Increased vulnerability to depressive-like behavior of mice with decreased expression of VGLUT1. Biol Psychiatry 66:275–282

    Article  CAS  PubMed  Google Scholar 

  • Gould NF, Holmes MK, Fantie BD, Luckenbaugh DA, Pine DS, Gould TD, Burgess N, Manji HK, Zarate CA Jr (2007) Performance on a virtual reality spatial memory navigation task in depressed patients. Am J Psychiatry 164:516–519

    Article  PubMed  Google Scholar 

  • Gronli J, Fiske E, Murison R, Bjorvatn B, Sorensen E, Ursin R, Portas CM (2007) Extracellular levels of serotonin and GABA in the hippocampus after chronic mild stress in rats. A microdialysis study in an animal model of depression Behav Brain Res 181:42–51

    Google Scholar 

  • Hammen C (2005). Stress and depression. Annu Rev Clin Psychol 1:293–319

    Google Scholar 

  • Imayoshi I, Sakamoto M, Ohtsuka T, Takao K, Miyakawa T, Yamaguchi M, Mori K, Ikeda T, Itohara S, Kageyama R (2008) Roles of continuous neurogenesis in the structural and functional integrity of the adult forebrain. Nat Neurosci 11:1153–1161

    Google Scholar 

  • Jayatissa MN, Bisgaard C, Tingstrom A, Papp M, Wiborg O (2006) Hippocampal cytogenesis correlates to escitalopram-mediated recovery in a chronic mild stress rat model of depression. Neuropsychopharmacology 31:2395–2404

    Article  CAS  PubMed  Google Scholar 

  • Jayatissa MN, Bisgaard CF, West MJ, Wiborg O (2008) The number of granule cells in rat hippocampus is reduced after chronic mild stress and re-established after chronic escitalopram treatment. Neuropharmacology 54:530–541

    Article  CAS  PubMed  Google Scholar 

  • Jayatissa MN, Henningsen K, West MJ, Wiborg O (2009) A reduced number of hippocampal granule cells does not associate with an anhedonia-like phenotype in a rat chronic mild stress model of depression. Stress [Epub ahead of print]

  • Judd LL, Paulus MJ, Schettler PJ, Akiskal HS, Endicott J, Leon AC, Maser JD, Mueller T, Solomon DA, Keller MB (2000) Does incomplete recovery from first lifetime major depressive episode herald a chronic course of illness? Am J Psychiatry 157:1501–1504

    Article  CAS  PubMed  Google Scholar 

  • Karten YJ, Olariu A, Cameron HA (2005) Stress in early life inhibits neurogenesis in adulthood. Trends Neurosci 28:171–172

    Article  CAS  PubMed  Google Scholar 

  • Kash SF, Tecott LH, Hodge C, Baekkeskov S (1999) Increased anxiety and altered responses to anxiolytics in mice deficient in the 65-kDa isoform of glutamic acid decarboxylase. Proc Natl Acad Sci U S A 96:1698–1703

    Article  CAS  PubMed  Google Scholar 

  • Kendler KS, Thornton LM, Gardner CO (2001) Genetic risk, number of previous depressive episodes, and stressful life events in predicting onset of major depression. Am J Psychiatry 158:582–586

    Article  CAS  PubMed  Google Scholar 

  • Kong H, Sha LL, Fan Y, Xiao M, Ding JH, Wu J, Hu G (2009) Requirement of AQP4 for antidepressive efficiency of fluoxetine: implication in adult hippocampal neurogenesis. Neuropsychopharmacology 34:1263–1276

    Article  CAS  PubMed  Google Scholar 

  • Lowry CA, Hale MW, Evans AK, Heerkens J, Staub DR, Gasser PJ, Shekhar A (2008) Serotonergic systems, anxiety, and affective disorder: focus on the dorsomedial part of the dorsal raphe nucleus. Ann N Y Acad Sci 1148:86–94

    Article  PubMed  Google Scholar 

  • Lucassen PJ, Heine VM, Muller MB, van der Beek EM, Wiegant VM, De Kloet ER, Joels M, Fuchs E, Swaab DF, Czeh B (2006) Stress, depression and hippocampal apoptosis. CNS Neurol Disord Drug Targets 5:531–546

    Article  PubMed  Google Scholar 

  • MacQueen GM, Campbell S, McEwen BS, Macdonald K, Amano S, Joffe RT, Nahmias C, Young LT (2003) Course of illness, hippocampal function, and hippocampal volume in major depression. Proc Natl Acad Sci U S A 100:1387–1392

    Article  CAS  PubMed  Google Scholar 

  • Malberg JE, Eisch AJ, Nestler EJ, Duman RS (2000) Chronic antidepressant treatment increases neurogenesis in adult rat hippocampus. J Neurosci 20:9104–9110

    CAS  PubMed  Google Scholar 

  • Michelsen KA, van den Hove DL, Schmitz C, Segers O, Prickaerts J, Steinbusch HW (2007) Prenatal stress and subsequent exposure to chronic mild stress influence dendritic spine density and morphology in the rat medial prefrontal cortex. BMC Neurosci 8:107

    Article  PubMed  Google Scholar 

  • Michelsen KA, Prickaerts J, Steinbusch HW (2008) The dorsal raphe nucleus and serotonin: implications for neuroplasticity linked to major depression and Alzheimer’s disease. Prog Brain Res 172:233–264

    Article  CAS  PubMed  Google Scholar 

  • Mineur YS, Belzung C, Crusio WE (2007) Functional implications of decreases in neurogenesis following chronic mild stress in mice. Neuroscience 150:251–259

    Article  CAS  PubMed  Google Scholar 

  • Morgan JI, Cohen DR, Hempstead JL, Curran T (1987) Mapping patterns of c-fos expression in the central nervous system after seizure. Science 237:192–197

    Article  CAS  PubMed  Google Scholar 

  • Moser MB, Moser EI (1998) Functional differentiation in the hippocampus. Hippocampus 8:608–619

    Article  CAS  PubMed  Google Scholar 

  • Neumeister A, Wood S, Bonne O, Nugent AC, Luckenbaugh DA, Young T, Bain EE, Charney DS, Drevets WC (2005) Reduced hippocampal volume in unmedicated, remitted patients with major depression versus control subjects. Biol Psychiatry 57:935–937

    Article  PubMed  Google Scholar 

  • Post RM (1992) Transduction of psychosocial stress into the neurobiology of recurrent affective disorder. Am J Psychiatry 149:999–1010

    CAS  PubMed  Google Scholar 

  • Qiu G, Helmeste DM, Samaranayake AN, Lau WM, Lee TM, Tang SW, So KF (2007) Modulation of the suppressive effect of corticosterone on adult rat hippocampal cell proliferation by paroxetine. Neurosci Bull 23:131–136

    Article  PubMed  Google Scholar 

  • Rajkowska G (2000) Postmortem studies in mood disorders indicate altered numbers of neurons and glial cells. Biol Psychiatry 48:766–777

    Article  CAS  PubMed  Google Scholar 

  • Reif A, Fritzen S, Finger M, Strobel A, Lauer M, Schmitt A, Lesch KP (2006) Neural stem cell proliferation is decreased in schizophrenia, but not in depression. Mol Psychiatry 11:514–522

    Article  CAS  PubMed  Google Scholar 

  • Robinson OJ, Sahakian BJ (2008) Recurrence in major depressive disorder: a neurocognitive perspective. Psychol Med 38:315–318

    Article  CAS  PubMed  Google Scholar 

  • Sanacora G, Gueorguieva R, Epperson CN, Wu YT, Appel M, Rothman DL, Krystal JH, Mason GF (2004) Subtype-specific alterations of gamma-aminobutyric acid and glutamate in patients with major depression. Arch Gen Psychiatry 61:705–713

    Article  CAS  PubMed  Google Scholar 

  • Santarelli L, Saxe M, Gross C, Surget A, Battaglia F, Dulawa S, Weisstaub N, Lee J, Duman R, Arancio O, Belzung C, Hen R (2003) Requirement of hippocampal neurogenesis for the behavioral effects of antidepressants. Science 301:805–809

    Article  CAS  PubMed  Google Scholar 

  • Shelton CI (2004) Long-term management of major depressive disorder: are differences among antidepressant treatments meaningful? J Clin Psychiatry 65(Suppl 17):29–33

    PubMed  Google Scholar 

  • Solomon DA, Keller MB, Leon AC, Mueller TI, Lavori PW, Shea MT, Coryell W, Warshaw M, Turvey C, Maser JD, Endicott J (2000) Multiple recurrences of major depressive disorder. Am J Psychiatry 157:229–233

    Article  CAS  PubMed  Google Scholar 

  • Stork O, Ji FY, Kaneko K, Stork S, Yoshinobu Y, Moriya T, Shibata S, Obata K (2000) Postnatal development of a GABA deficit and disturbance of neural functions in mice lacking GAD65. Brain Res 865:45–58

    Article  CAS  PubMed  Google Scholar 

  • Strekalova T, Spanagel R, Bartsch D, Henn FA, Gass P (2004) Stress-induced anhedonia in mice is associated with deficits in forced swimming and exploration. Neuropsychopharmacology 29:2007–2017

    Article  PubMed  Google Scholar 

  • Strekalova T, Gorenkova N, Schunk E, Dolgov O, Bartsch D (2006) Selective effects of citalopram in a mouse model of stress-induced anhedonia with a control for chronic stress. Behav Pharmacol 17:271–287

    Article  CAS  PubMed  Google Scholar 

  • Stroud CB, Davila J, Moyer A (2008) The relationship between stress and depression in first onsets versus recurrences: a meta-analytic review. J Abnorm Psychol 117:206–213

    Article  PubMed  Google Scholar 

  • Tashiro A, Makino H, Gage FH (2007) Experience-specific functional modification of the dentate gyrus through adult neurogenesis: a critical period during an immature stage. J Neurosci 27:3252–3259

    Article  CAS  PubMed  Google Scholar 

  • Tordera RM, Totterdell S, Wojcik SM, Brose N, Elizalde N, Lasheras B, Del Rio J (2007) Enhanced anxiety, depressive-like behaviour and impaired recognition memory in mice with reduced expression of the vesicular glutamate transporter 1 (VGLUT1). Eur J Neurosci 25:281–290

    Article  CAS  PubMed  Google Scholar 

  • Uezato A, Meador-Woodruff JH, McCullumsmith RE (2009) Vesicular glutamate transporter mRNA expression in the medial temporal lobe in major depressive disorder, bipolar disorder, and schizophrenia. Bipolar Disord 11:711–725

    Article  CAS  PubMed  Google Scholar 

  • Vollmayr B, Simonis C, Weber S, Gass P, Henn F (2003) Reduced cell proliferation in the dentate gyrus is not correlated with the development of learned helplessness. Biol Psychiatry 54:1035–1040

    Article  PubMed  Google Scholar 

  • Warner-Schmidt JL, Duman RS (2006) Hippocampal neurogenesis: opposing effects of stress and antidepressant treatment. Hippocampus 16:239–249

    Article  CAS  PubMed  Google Scholar 

  • Weiland-Fiedler P, Erickson K, Waldeck T, Luckenbaugh DA, Pike D, Bonne O, Charney DS, Neumeister A (2004) Evidence for continuing neuropsychological impairments in depression. J Affect Disord 82:253–258

    Article  PubMed  Google Scholar 

  • Willner P (2005) Chronic mild stress (CMS) revisited: consistency and behavioural–neurobiological concordance in the effects of CMS. Neuropsychobiology 52:90–110

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgments

We are very grateful to David García and Ainhoa Urbiola and to Sandra Lizaso for their excellent technical assistance with microscopy and HPLC studies. This work was supported by the EU Framework 6 Integrated Project NEWMOOD (LSHM-CT-2004-503474), the Ministry of Science and Innovation (SAF2008-02217, Spanish Government) and a fellowship from the Spanish Government (Department of Education) to N. Elizalde.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Rosa M. Tordera.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Elizalde, N., García-García, A.L., Totterdell, S. et al. Sustained stress-induced changes in mice as a model for chronic depression. Psychopharmacology 210, 393–406 (2010). https://doi.org/10.1007/s00213-010-1835-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00213-010-1835-6

Keywords

Navigation