Skip to main content
Log in

The role of NMDA receptors in the signal attenuation rat model of obsessive–compulsive disorder

  • Original Investigation
  • Published:
Psychopharmacology Aims and scope Submit manuscript

Abstract

Rationale

In recent years, an increasing body of evidence points to the involvement of the glutamatergic system and specifically the glutamatergic ionotropic N-methyl-d-aspartate (NMDA) receptor in the pathophysiology of obsessive–compulsive disorder (OCD).

Objectives

To test the role of NMDA receptors in compulsive behavior using the signal attenuation rat model of OCD. In this model, ‘compulsive’ behavior is induced by attenuating a signal indicating that a lever-press response was effective in producing food.

Methods

The NMDA antagonist, MK 801 (0.025–0.100 mg/kg) and the partial NMDA agonist, d-cycloserine (3–100 mg/kg) were administered to rats just before assessing their lever-press responding following signal attenuation (Experiments 1 and 2, respectively). Because the effects of signal attenuation are assessed under extinction conditions, drug doses that were effective in Experiments 1 and 2 were also tested in an extinction session of lever-press responding that was not preceded by signal attenuation (Experiment 3).

Results

Systemic administration of d-cycloserine (15 mg/kg) selectively decreased compulsive lever pressing, whereas systemic administration of MK 801 did not affect compulsive lever-pressing but dramatically increased resistance to extinction.

Conclusions

Activation of NMDA receptors may have an anti-compulsive effect in OCD patients.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  • Aboujaoude E, Barry JJ, Gamel N (2009) Memantine augmentation in treatment-resistant obsessive–compulsive disorder: an open-label trial. J Clin Psychopharmacol 29:51–55

    Article  PubMed  CAS  Google Scholar 

  • American Psychiatric Association (1994) Diagnostic and statistical manual of mental disorders, 4th edn. American Psychiatric Association, Washington

    Google Scholar 

  • Aouizerate B, Guehl D, Cuny E, Rougier A, Burbaud P, Tignol J, Bioulac B (2005) Updated overview of the putative role of the serotoninergic system in obsessive–compulsive disorder. Neuropsychiatr Dis Treat 1:231–243

    PubMed  CAS  Google Scholar 

  • Arnold PD, Rosenberg DR, Mundo E, Tharmalingam S, Kennedy JL, Richter MA (2004) Association of a glutamate (NMDA) subunit receptor gene (GRIN2B) with obsessive-compulsive disorder: a preliminary study. Psychopharmacology (Berl) 174:530–538

    Article  CAS  Google Scholar 

  • Baxter LR (1999) Functional imaging of brain systems mediating obsessive–compulsive disorder. In: Bunney CENW (ed) Neurobiology of Mental Illness. Oxford University Press, New York, pp 534–547

    Google Scholar 

  • Cascella NG, Macciardi F, Cavallini C, Smeraldi E (1994) d-cycloserine adjuvant therapy to conventional neuroleptic treatment in schizophrenia: an open-label study. J Neural Transm Gen Sect 95:105–111

    Article  PubMed  CAS  Google Scholar 

  • Chakrabarty K, Bhattacharyya S, Christopher R, Khanna S (2005) Glutamatergic dysfunction in OCD. Neuropsychopharmacology 30:1735–1740

    Article  PubMed  CAS  Google Scholar 

  • Coric V, Taskiran S, Pittenger C, Wasylink S, Mathalon DH, Valentine G, Saksa J, Wu YT, Gueorguieva R, Sanacora G, Malison RT, Krystal JH (2005) Riluzole augmentation in treatment-resistant obsessive-compulsive disorder: an open-label trial. Biol Psychiatry 58:424–428

    Article  PubMed  CAS  Google Scholar 

  • Dall’Olio R, Gandolfi O (1993) The NMDA positive modulator D-cycloserine potentiates the neuroleptic activity of D1 and D2 dopamine receptor blockers in the rat. Psychopharmacology (Berl) 110:165–168

    Article  Google Scholar 

  • Dall’Olio R, Rimondini R, Gandolfi O (1994) The NMDA positive modulator d-cycloserine inhibits dopamine-mediated behaviors in the rat. Neuropharmacology 33:55–59

    Article  PubMed  Google Scholar 

  • Denys D, Zohar J, Westenberg HG (2004) The role of dopamine in obsessive-compulsive disorder: preclinical and clinical evidence. J Clin Psychiatry 65(Suppl 14):11–17

    PubMed  CAS  Google Scholar 

  • Depoortere R, Perrault G, Sanger DJ (1999) Prepulse inhibition of the startle reflex in rats: effects of compounds acting at various sites on the NMDA receptor complex. Behav Pharmacol 10:51–62

    Article  PubMed  CAS  Google Scholar 

  • Dolberg OT, Iancu I, Sasson Y, Zohar J (1996) The pathogenesis and treatment of obsessive–compulsive disorder. Clin Neuropharmacol 19:129–147

    Article  PubMed  CAS  Google Scholar 

  • Egashira N, Okuno R, Harada S, Matsushita M, Mishima K, Iwasaki K, Nishimura R, Oishi R, Fujiwara M (2008) Effects of glutamate-related drugs on marble-burying behavior in mice: implications for obsessive-compulsive disorder. Eur J Pharmacol 586:164–170

    Article  PubMed  CAS  Google Scholar 

  • Emmett MR, Mick SJ, Cler JA, Rao TS, Iyengar S, Wood PL (1991) Actions of d-cycloserine at the N-methyl-d-aspartate-associated glycine receptor site in vivo. Neuropharmacology 30:1167–1171

    Article  PubMed  CAS  Google Scholar 

  • Flaisher-Grinberg S, Klavir O, Joel D (2008) The role of 5-HT2A and 5-HT2C receptors in the signal attenuation rat model of obsessive–compulsive disorder. Int J Neuropsychopharmacol 11:811–825

    Article  PubMed  CAS  Google Scholar 

  • Friedlander L, Desrocher M (2006) Neuroimaging studies of obsessive–compulsive disorder in adults and children. Clin Psychol Rev 26:32–49

    Article  PubMed  Google Scholar 

  • Gaisler-Salomon I, Weiner I (2003) Systemic administration of MK-801 produces an abnormally persistent latent inhibition which is reversed by clozapine but not haloperidol. Psychopharmacology (Berl) 166:333–342

    CAS  Google Scholar 

  • Gaisler-Salomon I, Diamant L, Rubin C, Weiner I (2008) Abnormally persistent latent inhibition induced by MK801 is reversed by risperidone and by positive modulators of NMDA receptor function: differential efficacy depending on the stage of the task at which they are administered. Psychopharmacology (Berl) 196:255–267

    Article  CAS  Google Scholar 

  • Goodman WK, McDougle CJ, Price LH, Riddle MA, Pauls DL, Leckman JF (1990) Beyond the serotonin hypothesis: a role for dopamine in some forms of obsessive compulsive disorder? J Clin Psychiatry 51(Suppl):36–43, discussion 55-8

    PubMed  Google Scholar 

  • Grant P, Lougee L, Hirschtritt M, Swedo SE (2007) An open-label trial of riluzole, a glutamate antagonist, in children with treatment-resistant obsessive–compulsive disorder. J Child Adolesc Psychopharmacol 17:761–767

    Article  PubMed  Google Scholar 

  • Gray J (1982) The Neuropsychology of Anxiety: An Enquiry into the Functions of the Septo-hippocampal System. Oxford University Press, Oxford

    Google Scholar 

  • Higgins GA, Enderlin M, Haman M, Fletcher PJ (2003) The 5-HT2A receptor antagonist M100, 907 attenuates motor and ‘impulsive-type’ behaviours produced by NMDA receptor antagonism. Psychopharmacology (Berl) 170:309–319

    Article  CAS  Google Scholar 

  • Hood WF, Compton RP, Monahan JB (1989) d-cycloserine: a ligand for the N-methyl-d-aspartate coupled glycine receptor has partial agonist characteristics. Neurosci Lett 98:91–95

    Article  PubMed  CAS  Google Scholar 

  • Joel D (2006a) Current animal models of obsessive compulsive disorder: a critical review. Prog Neuropsychopharmacol Biol Psychiatry 30:374–388

    Article  PubMed  Google Scholar 

  • Joel D (2006b) The signal attenuation rat model of obsessive–compulsive disorder: a review. Psychopharmacology (Berl) 186:487–503

    Article  CAS  Google Scholar 

  • Joel D, Avisar A (2001) Excessive lever pressing following post-training signal attenuation in rats: a possible animal model of obsessive compulsive disorder? Behav Brain Res 123:77–87

    Article  PubMed  CAS  Google Scholar 

  • Joel D, Doljansky J (2003) Selective alleviation of compulsive lever-pressing in rats by D1, but not D2, blockade: possible implications for the involvement of D1 receptors in obsessive–compulsive disorder. Neuropsychopharmacology 28:77–85

    Article  PubMed  CAS  Google Scholar 

  • Joel D, Klavir O (2006) The effects of temporary inactivation of the orbital cortex in the signal attenuation rat model of obsessive compulsive disorder. Behav Neurosci 120:976–983

    Article  PubMed  Google Scholar 

  • Joel D, Avisar A, Doljansky J (2001) Enhancement of excessive lever-pressing after post-training signal attenuation in rats by repeated administration of the D1 antagonist SCH 23390 or the D2 agonist quinpirole, but not the D1 agonist SKF 38393 or the D2 antagonist haloperidol. Behav Neurosci 115:1291–1300

    Article  PubMed  CAS  Google Scholar 

  • Joel D, Ben-Amir E, Doljansky J, Flaisher S (2004) ‘Compulsive’ lever-pressing in rats is attenuated by the serotonin re-uptake inhibitors paroxetine and fluvoxamine but not by the tricyclic antidepressant desipramine or the anxiolytic diazepam. Behav Pharmacol 15:241–252

    PubMed  CAS  Google Scholar 

  • Joel D, Doljansky J, Roz N, Rehavi M (2005a) Role of the orbital cortex and of the serotonergic system in a rat model of obsessive compulsive disorder. Neuroscience 130:25–36

    Article  PubMed  CAS  Google Scholar 

  • Joel D, Doljansky J, Schiller D (2005b) ‘Compulsive’ lever pressing in rats is enhanced following lesions to the orbital cortex, but not to the basolateral nucleus of the amygdala or to the dorsal medial prefrontal cortex. Eur J NeuroSci 21:2252–2262

    Article  PubMed  Google Scholar 

  • Johnson JW, Kotermanski SE (2006) Mechanism of action of memantine. Curr Opin Pharmacol 6:61–67

    Article  PubMed  CAS  Google Scholar 

  • Kanahara N, Shimizu E, Ohgake S, Fujita Y, Kohno M, Hashimoto T, Matsuzawa D, Shirayama Y, Hashimoto K, Iyo M (2008) Glycine and D: -serine, but not D: -cycloserine, attenuate prepulse inhibition deficits induced by NMDA receptor antagonist MK-801. Psychopharmacology (Berl) 198:363–374

    Article  CAS  Google Scholar 

  • Kushner MG, Kim SW, Donahue C, Thuras P, Adson D, Kotlyar M, McCabe J, Peterson J, Foa EB (2007) d-cycloserine augmented exposure therapy for obsessive–compulsive disorder. Biol Psychiatry 62:835–838

    Article  PubMed  CAS  Google Scholar 

  • Lahti AC, Holcomb HH, Medoff DR, Tamminga CA (1995) Ketamine activates psychosis and alters limbic blood flow in schizophrenia. NeuroReport 6:869–872

    Article  PubMed  CAS  Google Scholar 

  • Lipton SA (2006) Paradigm shift in neuroprotection by NMDA receptor blockade: memantine and beyond. Nat Rev Drug Discov 5:160–170

    Article  PubMed  CAS  Google Scholar 

  • Malhotra AK, Pinals DA, Adler CM, Elman I, Clifton A, Pickar D, Breier A (1997) Ketamine-induced exacerbation of psychotic symptoms and cognitive impairment in neuroleptic-free schizophrenics. Neuropsychopharmacology 17:141–150

    Article  PubMed  CAS  Google Scholar 

  • Malloy P (1987) Frontal lobe dysfunction in obsessive compulsive disorder. In: Perecman E (ed) The Frontal Lobes Revisited. IRBN, New-York

    Google Scholar 

  • McDougle CJ, Goodman WK, Leckman JF, Price LH (1993) The psychopharmacology of obsessive compulsive disorder. Implications for treatment and pathogenesis. Psychiatr Clin North Am 16:749–766

    PubMed  CAS  Google Scholar 

  • McGrath MJ, Campbell KM, Parks CR, Burton FH (2000) Glutamatergic drugs exacerbate symptomatic behavior in a transgenic model of comorbid Tourette’s syndrome and obsessive–compulsive disorder. Brain Res 877:23–30

    Article  PubMed  CAS  Google Scholar 

  • Moghaddam B, Adams BW (1998) Reversal of phencyclidine effects by a group II metabotropic glutamate receptor agonist in rats. Science 281:1349–1352

    Article  PubMed  CAS  Google Scholar 

  • Monahan JB, Corpus VM, Hood WF, Thomas JW, Compton RP (1989) Characterization of a [3H]glycine recognition site as a modulatory site of the N-methyl-d-aspartate receptor complex. J Neurochem 53:370–375

    Article  PubMed  CAS  Google Scholar 

  • Norberg MM, Krystal JH, Tolin DF (2008) A meta-analysis of d-cycloserine and the facilitation of fear extinction and exposure therapy. Biol Psychiatry 63:1118–1126

    Article  PubMed  CAS  Google Scholar 

  • Nordstrom EJ, Burton FH (2002) A transgenic model of comorbid Tourette’s syndrome and obsessive-compulsive disorder circuitry. Mol Psychiatry 7(617–25):524

    Article  Google Scholar 

  • Otto MW (1992) Normal and abnormal information processing. A neuropsychological perspective on obsessive compulsive disorder. Psychiatr Clin North Am 15:825–848

    PubMed  CAS  Google Scholar 

  • Peterson SL, Schwade ND (1993) The anticonvulsant activity of d-cycloserine is specific for tonic convulsions. Epilepsy Res 15:141–148

    Article  PubMed  CAS  Google Scholar 

  • Piccinelli M, Pini S, Bellantuono C, Wilkinson G (1995) Efficacy of drug treatment in obsessive-compulsive disorder. A meta-analytic review. Br J Psychiatry 166:424–443

    Article  PubMed  CAS  Google Scholar 

  • Pitkanen M, Sirvio J, MacDonald E, Niemi S, Ekonsalo T, Riekkinen P Sr (1995) The effects of D-cycloserine and MK-801 on the performance of rats in two spatial learning and memory tasks. Eur Neuropsychopharmacol 5:457–463

    PubMed  CAS  Google Scholar 

  • Pitman RK (1987) A cybernetic model of obsessive–compulsive psychopathology. Compr Psychiatry 28:334–343

    Article  PubMed  CAS  Google Scholar 

  • Pitman RK (1991) Historical considerations. In: Zohar J, Insel T, Rasmussen S (eds) The psychobiology of obsessive–compulsive disorder. Springer, New-York, pp 1–12

    Google Scholar 

  • Pittenger C, Krystal JH, Coric V (2006) Glutamate-modulating drugs as novel pharmacotherapeutic agents in the treatment of obsessive–compulsive disorder. NeuroRx 3:69–81

    Article  PubMed  CAS  Google Scholar 

  • Port RL, Seybold KS (1998) Manipulation of NMDA-receptor activity alters extinction of an instrumental response in rats. Physiol Behav 64:391–393

    Article  PubMed  CAS  Google Scholar 

  • Priestley T, Kemp JA (1994) Kinetic study of the interactions between the glutamate and glycine recognition sites on the N-methyl-d-aspartic acid receptor complex. Mol Pharmacol 46:1191–1196

    PubMed  CAS  Google Scholar 

  • Reed GF (1977) Obsessional personality disorder and remembering. Br J Psychiatry 130:177–183

    Article  PubMed  CAS  Google Scholar 

  • Sasson Y, Zohar J, Chopra M, Lustig M, Iancu I, Hendler T (1997) Epidemiology of obsessive–compulsive disorder: a world view. J Clin Psychiatry 58(Suppl 12):7–10

    PubMed  Google Scholar 

  • Shannon HE, Love PL (2004) Within-session repeated acquisition behavior in rats as a potential model of executive function. Eur J Pharmacol 498:125–134

    Article  PubMed  CAS  Google Scholar 

  • Starck G, Ljungberg M, Nilsson M, Jonsson L, Lundberg S, Ivarsson T, Ribbelin S, Ekholm S, Carlsson A, Forssell-Aronsson E, Carlsson ML (2008) A 1H magnetic resonance spectroscopy study in adults with obsessive compulsive disorder: relationship between metabolite concentrations and symptom severity. J Neural Transm 115:1051–1062

    Article  PubMed  Google Scholar 

  • Stein DJ (2002) Obsessive–compulsive disorder. Lancet 360:397–405

    Article  PubMed  Google Scholar 

  • Stephens DN, Cole BJ (1996) AMPA antagonists differ from NMDA antagonists in their effects on operant DRL and delayed matching to position tasks. Psychopharmacology (Berl) 126:249–259

    Article  CAS  Google Scholar 

  • Szechtman H, Woody E (2004) Obsessive–compulsive disorder as a disturbance of security motivation. Psychol Rev 111:111–127

    Article  PubMed  Google Scholar 

  • van der Meulen JA, Bilbija L, Joosten RN, de Bruin JP, Feenstra MG (2003) The NMDA-receptor antagonist MK-801 selectively disrupts reversal learning in rats. NeuroReport 14:2225–2228

    Article  PubMed  Google Scholar 

  • Vengeliene V, Kiefer F, Spanagel R (2008) D-cycloserine facilitates extinction of conditioned alcohol-seeking behaviour in rats. Alcohol Alcohol 43:626–629

    PubMed  CAS  Google Scholar 

  • Welzl H, Berz S, Battig K (1991) The effects of the noncompetitive NMDA receptor antagonist MK 801 on DRL performance in rats. Psychobiology 19:211–216

    CAS  Google Scholar 

  • Wilhelm S, Buhlmann U, Tolin DF, Meunier SA, Pearlson GD, Reese HE, Cannistraro P, Jenike MA, Rauch SL (2008) Augmentation of behavior therapy with d-cycloserine for obsessive–compulsive disorder. Am J Psychiatry 165:335–341, quiz 409

    Article  PubMed  Google Scholar 

  • Zohar J, Zohar-Kadouch RC, Kindler S (1992) Current concepts in the pharmacological treatment of obsessive–compulsive disorder. Drugs 43:210–218

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Daphna Joel.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Albelda, N., Bar-On, N. & Joel, D. The role of NMDA receptors in the signal attenuation rat model of obsessive–compulsive disorder. Psychopharmacology 210, 13–24 (2010). https://doi.org/10.1007/s00213-010-1808-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00213-010-1808-9

Keywords

Navigation