Skip to main content
Log in

Are DBA/2 mice associated with schizophrenia-like endophenotypes? A behavioural contrast with C57BL/6 mice

  • Original Investigation
  • Published:
Psychopharmacology Aims and scope Submit manuscript

Abstract

Rationale

Due to its intrinsic deficiency in prepulse inhibition (PPI), the inbred DBA/2 mouse strain has been considered as an animal model for evaluating antipsychotic drugs. However, the PPI impairment observed in DBA/2 mice relative to the common C57BL/6 strain is confounded by a concomitant reduction in baseline startle reactivity. In this study, we examined the robustness of the PPI deficit when this confound is fully taken into account.

Materials and methods

Male DBA/2 and C57BL/6 mice were compared in a PPI experiment using multiple pulse stimulus intensities, allowing the possible matching of startle reactivity prior to examination of PPI. The known PPI-enhancing effect of the antipsychotic, clozapine, was then evaluated in half of the animals, whilst the other half was subjected to two additional schizophrenia-relevant behavioural tests: latent inhibition (LI) and locomotor reaction to the psychostimulants—amphetamine and phencyclidine.

Results

PPI deficiency in DBA/2 relative to C57BL/6 mice was essentially independent of the strain difference in baseline startle reactivity. Yet, there was no evidence that DBA/2 mice were superior in detecting the PPI-facilitating effect of clozapine when startle difference was balanced. Compared with C57BL/6 mice, DBA/2 mice also showed impaired LI and a different temporal profile in their responses to amphetamine and phencyclidine.

Conclusion

Relative to the C57BL/6 strain, DBA/2 mice displayed multiple behavioural traits relevant to schizophrenia psycho- and physiopathology, indicative of both dopaminergic and glutamatergic/N-methyl-d-aspartic acid receptor dysfunctions. Further examination of their underlying neurobiological differences is therefore warranted in order to enhance the power of this specific inter-strain comparison as a model of schizophrenia.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

Notes

  1. Strictly speaking, this is not a classical double dissociation due to a lack of a common control comparison group against which the DBA/2 and C57BL/6 strains can be compared. Here, DBA/2 mice showed a relative impairment in PPI, whilst C57BL/6 mice exhibited a lack of startle habituation when they were compared with each other.

References

  • Alexander RC, Wright R, Freed W (1996) Quantitative trait loci contributing to phencyclidine-induced and amphetamine-induced locomotor behavior in inbred mice. Neuropsychopharmacology 15:484–490

    Article  PubMed  CAS  Google Scholar 

  • Ammassari-Teule M, Passino E, Restivo L, de Marsanich B (2000a) Fear conditioning in C57BL/6 and DBA/2: variability in nucleus accumbens according to the strain predisposition to show contextual- or cue-based responding. Eur J Neurosci 12:4467–4474

    PubMed  CAS  Google Scholar 

  • Ammassari-Teule M, Restivo L, Passino E (2000b) Contextual-dependent effects of nucleus accumbens lesions on spatial learning in mice. Neuroreport 11:2485–2490

    Article  PubMed  CAS  Google Scholar 

  • Ammassari-Teule M, Tozzi A, Rossi-Arnaud C, Save E, Thinus-Blanc C (1995) Reactions to spatial and nonspatial change in two inbred strains of mice: further evidence supporting the hippocampal dysfunction hypothesis in the DBA/2 strain. Psychobiology 23:284–289

    Google Scholar 

  • Arguello PA, Gogos JA (2006) Modeling madness in mice: one piece at a time. Neuron 52:179–196

    Article  PubMed  CAS  Google Scholar 

  • Badiani A, Cabib S, Puglisi-Allegra S (1992) Chronic stress induces strain-dependent sensitization to the behavioral effects of amphetamine in the mouse. Pharmacol Biochem Behav 43:53–60

    Article  PubMed  CAS  Google Scholar 

  • Baarendse PJ, van Grootheest G, Jansen RF, Pieneman AW, Ogren SO, Verhage M, Stiedl O (2008) Differential involvement of the dorsal hippocampus in passive avoidance in C57bl/6J and DBA/2J mice. Hippocampus 18:11–19

    Article  PubMed  Google Scholar 

  • Barber RP, Vaughn JE, Wimer RE, Wimer CC (1974) Genetically-associated variations in the distribution of dentate granule cells synapses upon the pyramidal cell dendrites in the mouse hippocampus. J Comp Neurol 156:417–434

    Article  PubMed  CAS  Google Scholar 

  • Baruch I, Hemsley D, Gray JA (1988) Differential performance of acute and chronic schizophrenic in a latent inhibition task. J Nerv Ment Dis 176:598–606

    Article  PubMed  CAS  Google Scholar 

  • Bortolato M, Frau R, Orrù M, Piras AP, Fà M, Tuveri A, Puligheddu M, Gessa GL, Castelli MP, Mereu G, Marrosu F (2007) Activation of GABA(B) receptors reverses spontaneous gating deficits in juvenile DBA/2J mice. Psychopharmacology 194:361–369

    Article  PubMed  CAS  Google Scholar 

  • Boulay D, Pichat P, Dargazanli G, Estenne-Bouhtou G, Terranova JP, Rogacki N, Stemmelin J, Coste A, Lanneau C, Desvignes C, Cohen C, Alonso R, Vigé X, Biton B, Steinberg R, Sevrin M, Oury-Donat F, George P, Bergis O, Griebel G, Avenet P, Scatton B (2008) Characterization of SSR103800, a selective inhibitor of the glycine transporter-1 in models predictive of therapeutic activity in schizophrenia. Pharmacol Biochem Behav 91:47–58

    Article  PubMed  CAS  Google Scholar 

  • Bovet D, Bovet-Nitti F, Oliverio A (1969) Genetic aspects of learning and memory in mice. Science 163:139–149

    Article  PubMed  CAS  Google Scholar 

  • Braff DL, Geyer MA, Swerdlow NR (2001) Human studies of prepulse inhibition of startle: normal subjects, patient groups, and pharmacological studies. Psychopharmacology (Berl) 156:234–258

    Article  CAS  Google Scholar 

  • Braff DL, Grillon C, Geyer MA (1992) Gating and habituation of the startle reflex in schizophrenic patients. Arch Gen Psychiatry 49:206–215

    PubMed  CAS  Google Scholar 

  • Browman KE, Komater VA, Curzon P, Rueter LE, Hancock AA, Decker MW, Fox GB (2004) Enhancement of prepulse inhibition of startle in mice by the H3 receptor antagonists thioperamide and ciproxifan. Behav Brain Res 153:69–76

    Article  PubMed  CAS  Google Scholar 

  • Bullock AE, Slobe BS, Vazques V, Collins AC (1997) Inbred mouse strains differ in the regulation of startle and prepulse inhibition of the startle response. Behav Neurosci 111:1353–1360

    Article  PubMed  CAS  Google Scholar 

  • Cabib S, Bonaventura N (1997) Parallel strain-dependent susceptibility to environmentally-induced stereotypies and stress-induced behavioral sensitization in mice. Physiol Behav 61:499–506

    Article  PubMed  CAS  Google Scholar 

  • Cabib S, Orsini C, Le Moal M, Piazza PV (2000) Abolition and reversal of strain differences in behavioral responses to drugs of abuse after a brief experience. Science 289:463–465

    Article  PubMed  CAS  Google Scholar 

  • Coyle JT (2006) Glutamate and schizophrenia: beyond the dopamine hypothesis. Cell Mol Neurobiol 26:365–384

    Article  PubMed  CAS  Google Scholar 

  • Cabib S, Puglisi-Allegra S, Ventura R (2002) The contribution of comparative studies in inbred strains of mice to the understanding of the hyperactive phenotype. Behav Brain Res 130:103–109

    Article  PubMed  CAS  Google Scholar 

  • Carlsson A (1988) The current status of the dopamine hypothesis of schizophrenia. Neuropsychopharmacology 1:179–186

    Article  PubMed  CAS  Google Scholar 

  • Carran AB, Yeudall LT, Royce JR (1964) Voltage level and skin resistance in avoidance conditioning in inbred strains of mice. J Comp Physiol Psychol 58:427–430

    Article  PubMed  CAS  Google Scholar 

  • Chang T, Meyer U, Feldon J, Yee BK (2007) Disruption of the US pre-exposure effect and latent inhibition in two-way active avoidance by systemic amphetamine in C57BL/6 mice. Psychopharmacology (Berl) 191:211–221

    Article  CAS  Google Scholar 

  • Crawley JN, Belknap JK, Collins A, Crabbe JC, Frankel W, Henderson N, Hitzemann RJ, Maxson SC, Miner LL, Silva AJ, Wehner JM, Wynshaw-Boris A, Paylor R (1997) Behavioral phenotypes of inbred mouse strains: implications and recommendations for molecular studies. Psychopharmacology (Berl) 132:107–124

    Article  CAS  Google Scholar 

  • Csomor PA, Yee BK, Quednow BB, Stadler RR, Feldon J, Vollenweider FX (2006) The monotonic dependency of prepulse inhibition of the acoustic startle reflex on the intensity of the startle-eliciting stimulus. Behav Brain Res 174:143–150

    Article  PubMed  Google Scholar 

  • Csomor PA, Yee BK, Feldon J, Theodoridou A, Studerus E, Vollenweider FX (2009) Impaired prepulse inhibition and prepulse-elicited reactivity but intact reflex circuit excitability in unmedicated schizophrenia patients: a comparison with healthy subjects and medicated schizophrenia patients. Schizophr Bull 35:244–255

    Article  PubMed  Google Scholar 

  • Csomor PA, Yee BK, Vollenweider FX, Feldon J, Nicolet T, Quednow BB (2008) On the influence of baseline startle reactivity on the indexation of prepulse inhibition. Behav Neurosci 122:885–900

    Article  PubMed  Google Scholar 

  • Depoortère R, Dargazanli G, Estenne-Bouhtou G, Coste A, Lanneau C, Desvignes C, Poncelet M, Heaulme M, Santucci V, Decobert M, Cudennec A, Voltz C, Boulay D, Terranova JP, Stemmelin J, Roger P, Marabout B, Sevrin M, Vigé X, Biton B, Steinberg R, Françon D, Alonso R, Avenet P, Oury-Donat F, Perrault G, Griebel G, George P, Soubrié P, Scatton B (2005) Neurochemical, electrophysiological and pharmacological profiles of the selective inhibitor of the glycine transporter-1 SSR504734, a potential new type of antipsychotic. Neuropsychopharmacology 30:1963–1985

    Article  PubMed  CAS  Google Scholar 

  • Ellenbroek BA (2004) Pre-attentive processing and schizophrenia: animal studies. Psychopharmacology (Berl) 174:65–74

    Article  CAS  Google Scholar 

  • Fox GB, Esbenshade TA, Pan JB, Radek RJ, Krueger KM, Yao BB, Browman KE, Buckley MJ, Ballard ME, Komater VA, Miner H, Zhang M, Faghih R, Rueter LE, Bitner RS, Drescher KU, Wetter J, Marsh K, Lemaire M, Porsolt RD, Bennani YL, Sullivan JP, Cowart MD, Decker MW, Hancock AA (2005) Pharmacological properties of ABT-239 [4-(2-{2-[(2R)-2-methylpyrrolidinyl]ethyl}-benzofuran-5-yl) benzonitrile]: II. Neurophysiological characterization and broad preclinical efficacy in cognition and schizophrenia of a potent and selective histamine H3 receptor antagonist. J Pharmacol Exp Ther 313:176–190

    Article  PubMed  CAS  Google Scholar 

  • Gaisler-Salomon I, Weiner I (2003) Systemic administration of MK-801 produces an abnormally persistent latent inhibition which is reversed by clozapine but not haloperidol. Psychopharmacology (Berl) 166:333–342

    CAS  Google Scholar 

  • Gaisler-Salomon I, Diamant L, Rubin C, Weiner I (2008) Abnormally persistent latent inhibition induced by MK801 is reversed by risperidone and by positive modulators of NMDA receptor function: differential efficacy depending on the stage of the task at which they are administered. Psychopharmacology (Berl) 196:255–267

    Article  CAS  Google Scholar 

  • Gerlai R (1998) Contextual learning and cue association in fear conditioning in mice: a strain comparison and lesion study. Behav Brain Res 133:925–940

    Google Scholar 

  • Geyer MA (2006a) The family of sensorimotor gating disorders: comorbidities or diagnostic overlaps? Neurotox Res 10:211–220

    Article  PubMed  CAS  Google Scholar 

  • Geyer MA (2006b) Are cross-species measures of sensorimotor gating useful for the discovery of procognitive cotreatments for schizophrenia? Dialogues Clin Neurosci 8:9–16

    PubMed  Google Scholar 

  • Geyer MA, Braff DL (1987) Startle habituation and sensorimotor gating in schizophrenia and related animal models. Schizophr Bull 13:643–668

    PubMed  CAS  Google Scholar 

  • Geyer MA, McIlwain KL, Paylor R (2002) Mouse genetic models for prepulse inhibition: an early review. Mol Psychiatry 7:1039–1053

    Article  PubMed  CAS  Google Scholar 

  • Geyer MA, Swerdlow NR, Mansbach RS, Braff DL (1990) Startle response models of sensorimotor gating and habituation deficits in schizophrenia. Brain Res Bull 25:485–498

    Article  PubMed  CAS  Google Scholar 

  • Gould TJ, Wehner JM (1999) Genetic influences on latent inhibition. Behav Neurosci 113:1291–1296

    Article  PubMed  CAS  Google Scholar 

  • Gray JA, Feldon J, Rawlins JNP, Hemsley DR, Smith AD (1991) The neuropsychology of schizophrenia. Behav Brain Res 14:1–84

    Google Scholar 

  • Gray NS, Hemsley DR, Gray JA (1992) Abolition of latent inhibition in acute, but not chronic schizophrenics. Neurol Psychiatry Brain Res 1:83–89

    Google Scholar 

  • Gray JA, Joseph MH, Hemsley DR, Young AM, Warburton EC, Boulenguez P, Grigoryan GA, Peters SL, Rawlins JN, Taib CT (1995) The role of mesolimbic dopaminergic and retrohippocampal afferents to the nucleus accumbens in latent inhibition: implications for schizophrenia Behav Brain Res 71:19–31

    CAS  Google Scholar 

  • Hince DA, Martin-Iverson MT (2005) Differences in prepulse inhibition (PPI) between Wistar and Sprague–Dawley rats clarified by a new method of PPI standardization. Behav Neurosci 119:66–77

    Article  PubMed  Google Scholar 

  • Hoffman HS, Searle JL (1965) Acoustic variables in the modification of startle reaction in the rat. J Comp Physiol Psychol 60:53–58

    Article  PubMed  CAS  Google Scholar 

  • Honey RC, Good M (1993) Selective hippocampal lesions abolish the contextual specificity of latent inhibition and conditioning. Behav Neurosci 107:23–33

    Article  PubMed  CAS  Google Scholar 

  • Iso H, Shimai S (1991) Running-wheel avoidance learning in mice (Mus musculus): evidence of contingency learning and differences among inbred strains. J Comp Psychol 105:190–202

    Article  Google Scholar 

  • Javitt DC (2007) Glutamate and schizophrenia: phencyclidine, N-methyl-d-aspartate receptors, and dopamine–glutamate interactions. Int Rev Neurobiol 78:69–108

    Article  PubMed  CAS  Google Scholar 

  • Killcross AS, Kiernan MJ, Dwyer D, Westbrook RF (1998) Loss of latent inhibition of contextual conditioning following non-reinforced context exposure in rats. Q J Exp Psychol B 51:75–90

    PubMed  CAS  Google Scholar 

  • Kinney GG, Sur C, Burno M, Mallorga PJ, Williams JB, Figueroa DJ, Wittmann M, Lemaire W, Conn PJ (2003) The glycine transporter type 1 inhibitor N-[3-(4'-fluorophenyl)-3-(4'-phenylphenoxy) propyl]sarcosine potentiates NMDA receptor-mediated responses in vivo and produces an antipsychotic profile in rodent behavior. J Neurosci 23:7586–7591

    PubMed  CAS  Google Scholar 

  • Lipina T, Labrie V, Weiner I, Roder J (2005) Modulators of the glycine site on NMDA receptors, d-serine and ALX 5407, display similar beneficial effects to clozapine in mouse models of schizophrenia. Psychopharmacology (Berl) 179:54–67

    Article  CAS  Google Scholar 

  • Logue SF, Owen EH, Rasmussen DL, Wehner JM (1997) Assessment of locomotor activity, acoustic and tactile startle, and prepulse inhibition of startle in inbred mouse strains and F1 hybrids: implications of genetic background for single gene and quantitative trait loci analyses. Neuroscience 80:1075–1086

    Article  PubMed  CAS  Google Scholar 

  • Lubow RE (1989) Latent inhibition and conditioned attention theory. Cambridge University Press, New York

    Google Scholar 

  • Lubow RE, Moore AU (1959) Latent inhibition: the effect of non-reinforced preexposure to the conditional stimulus. J Comp Physiol Psychol 66:688–694

    Article  Google Scholar 

  • Mackintosh NJ (1973) Stimulus selection: learning to ignore stimuli that predict no change in reinforcement. In: Hinde RA, Stevenson-Hinde J (eds) Constraints on learning. Academic, London, pp 75–96

    Google Scholar 

  • McCaughran JJ, Mahjubi E, Decena E, Hitzemann R (1997) Genetics, haloperidol-induced catalepsy and haloperidol-induced changes in acoustic startle and prepulse inhibition. Psychopharmacology 134:131–139

    Article  PubMed  CAS  Google Scholar 

  • McNamara RK, Levant B, Taylor B, Ahlbrand R, Liu Y, Sullivan JR, Stanford K, Richtand NM (2006) C57BL/6J mice exhibit reduced dopamine D3 receptor-mediated locomotor-inhibitory function relative to DBA/2J mice. Neuroscience 143:141–153

    Article  PubMed  CAS  Google Scholar 

  • Morse AC, Erwin VG, Jones BC (1993) Strain and housing affect cocaine self-selection and open-field locomotor activity in mice. Pharmacol Biochem Behav 45:905–912

    Article  PubMed  CAS  Google Scholar 

  • Olivier B, Leahy C, Mullen T, Paylor R, Groppi VE, Sarnyai Z, Brunner D (2001) The DBA/2J strain and prepulse inhibition of startle: a model system to test antipsychotics. Psychopharmacology (Berl) 156:284–290

    Article  CAS  Google Scholar 

  • Paylor R, Baskall L, Wehner JM (1993) Behavioral dissociations between C57BL/6 and DBA/2 mice on learning and memory tasks: a hippocampal dysfunction hypothesis. Psychobiology 21:11–26

    Google Scholar 

  • Paylor R, Crawley JN (1997) Inbred strain differences in prepulse inhibition of the mouse startle response. Psychopharmacology 132:169–118

    Article  PubMed  CAS  Google Scholar 

  • Paylor R, Tracy R, Wehner J, Rudy JR (1994) DBA/2 and C57BL/6 mice differ in contextual fear conditioning but not auditory fear conditioning. Behav Neurosci 108:810–817

    Article  PubMed  CAS  Google Scholar 

  • Pietropaolo S, Singer P, Feldon J, Yee BK (2008) The postweaning social isolation in C57BL/6 mice: preferential vulnerability in the male sex. Psychopharmacology 197:613–628

    Article  PubMed  CAS  Google Scholar 

  • Pouzet B, Zhang WN, Weiner I, Feldon J, Yee BK (2004) Latent inhibition is spared by N-methyl-d-aspartate (NMDA)-induced ventral hippocampal lesions, but is attenuated following local activation of the ventral hippocampus by intracerebral NMDA infusion. Neuroscience 124:183–194

    Article  PubMed  CAS  Google Scholar 

  • Puglisi-Allegra S, Cabib S (1997) Psychopharmacology of dopamine: the contribution of comparative studies in inbred strains of mice. Prog Neurobiol 51:637–661

    Article  PubMed  CAS  Google Scholar 

  • Oliverio A (1967) Effects of different conditioning schedules based on visual and acoustic conditioned stimulus on avoidance learning of two strains of mice. J Psychol 65:131–139

    PubMed  CAS  Google Scholar 

  • Ouagazzal AM, Jenck F, Moreau JL (2001) Drug-induced potentiation of prepulse inhibition of acoustic startle reflex in mice: a model for detecting antipsychotic activity? Psychopharmacology (Berl) 156:273–283

    Article  CAS  Google Scholar 

  • Restivo L, Passino E, Middei S, Ammassari-Teule M (2002) The strain-specific involvement of nucleus accumbens in latent inhibition might depend on differences in processing configural- and cue-based information between C57BL/6 and DBA mice. Brain Res Bull 57:35–39

    Article  PubMed  Google Scholar 

  • Sandner G, Canal NM (2007) Relationship between PPI and baseline startle response. Cogn Neurodyn 1:27–37

    Article  PubMed  Google Scholar 

  • Schmajuk NA, Larrauri JA (2005) Neural network model of prepulse inhibition. Behav Neurosci 119:1546–1562

    Article  PubMed  Google Scholar 

  • Schmajuk NA, Gray JA, Lam YW (1996) Latent inhibition: a neural network approach. J Exp Psychol Anim Behav Process 22:321–349

    Article  PubMed  CAS  Google Scholar 

  • Schiller D, Zuckerman L, Weiner I (2006) Abnormally persistent latent inhibition induced by lesions to the nucleus accumbens core, basolateral amygdala and orbitofrontal cortex is reversed by clozapine but not by haloperidol. J Psychiatr Res 40:167–177

    Article  PubMed  Google Scholar 

  • Schwabe K, Freudenberg F, Koch M (2007) Selective breeding of reduced sensorimotor gating in Wistar rats. Behav Genet 37:706–712

    Article  PubMed  Google Scholar 

  • Snyder SH (1976) The dopamine hypothesis of schizophrenia: focus on the dopamine receptor. Am J Psychiatry 133:197–202

    PubMed  CAS  Google Scholar 

  • Spielewoy C, Markou A (2004) Strain-specificity in nicotine attenuation of phencyclidine-induced disruption of prepulse inhibition in mice: relevance to smoking in schizophrenia patients. Behav Genet 34:343–354

    Article  PubMed  Google Scholar 

  • Sprott RL, Stavnes K (1975) Effects of situational variables on performance of inbred mice in active- and passive-avoidance situations. Psychol Rep 37:683–692

    PubMed  CAS  Google Scholar 

  • Stavnes K, Sprott RL (1975a) Effects of age and genotype on acquisition of an active avoidance response in mice. Dev Psychobiol 8:437–445

    Article  PubMed  CAS  Google Scholar 

  • Stavnes KL, Sprott RL (1975b) Genetic analysis of active avoidance performance in mice. Psychol Rep 36:515–521

    PubMed  CAS  Google Scholar 

  • Stevens KE, Freedman R, Collins AC, Hall M, Leonard S, Marks MJ, Rose GM (1996) Genetic correlation of inhibitory gating of hippocampal auditory evoked response and alpha-bungarotoxin-binding nicotinic cholinergic receptors in inbred mouse strains. Neuropsychopharmacology 15:152–162

    Article  PubMed  CAS  Google Scholar 

  • Stevens KE, Wear KD (1997) Normalizing effects of nicotine and a novel nicotinic agonist on hippocampal auditory gating in two animal models. Pharmacol Biochem Behav 57:869–874

    Article  PubMed  CAS  Google Scholar 

  • Swerdlow NR, Braff DL, Geyer MA (2000) Animal models of deficient sensorimotor gating: what we know, what we think we know, and what we hope to know soon. Behav Pharmacol 11:185–204

    PubMed  CAS  Google Scholar 

  • Swerdlow NR, Geyer MA (1998) Using an animal model of deficient sensorimotor gating to study the pathophysiology and new treatments of schizophrenia. Schizophr Bull 24:285–301

    PubMed  CAS  Google Scholar 

  • Swerdlow NR, Weber M, Qu Y, Light GA, Braff DL (2008) Realistic expectations of prepulse inhibition in translational models for schizophrenia research. Psychopharmacology (Berl) 199:331–388

    Article  CAS  Google Scholar 

  • Tohmi M, Tsuda N, Mizuno M, Takei N, Frankland PW, Nawa H (2005) Distinct influences of neonatal epidermal growth factor challenge on adult neurobehavioral traits in four mouse strains. Behav Genet 35:615–629

    Article  PubMed  Google Scholar 

  • Ventura R, Alcaro A, Cabib S, Conversi D, Mandolesi L, Puglisi-Allegra S (2004) Dopamine in the medial prefrontal cortex controls genotype-dependent effects of amphetamine on mesoaccumbens dopamine release and locomotion. Neuropsychopharmacology 29:72–80

    Article  PubMed  CAS  Google Scholar 

  • Vetulani J, Battaglia M, Sansone M (1989) Nimodipine on shuttle-box avoidance learning in mice: no impairment but slight improvement. Pharmacol Biochem Behav 56:577–581

    Article  Google Scholar 

  • Wagner AR (1978) Expectancies and the priming of STM. In: Tighe TJ, Fowler H, Honig WK (eds) Cognitive processes in animal behavior. Erlbaum, Hillsdale, NJ, pp 177–209

    Google Scholar 

  • Wahlsten D (1972) Phenotypic and genetic relations between initial response to electric shock and rate of avoidance learning in mice. Behav Genet 2:211–240

    Article  PubMed  CAS  Google Scholar 

  • Wehner JM, Sleight S, Upchurch M (1990) Hippocampal protein kinase C is reduced in poor spatial learners. Brain Res 523:181–187

    Article  PubMed  CAS  Google Scholar 

  • Weinberger SB, Koob GF, Martinez JL Jr (1992) Differences in one-way active avoidance learning in mice of three inbred strains. Behav Genet 22:177–188

    Article  PubMed  CAS  Google Scholar 

  • Weiner I (2003) The "two-headed" latent inhibition model of schizophrenia: modelling positive and negative symptoms and their treatment. Psychopharmacology (Berl) 169:257–297

    Article  CAS  Google Scholar 

  • Williams JH, Wellman NA, Geaney DP, Cowen PJ, Feldon J, Rawlins JNP (1998) Reduced latent inhibition in people with schizophrenia: an effect of psychosis or of its treatment. Br J Psychiatry 172:243–249

    Article  PubMed  CAS  Google Scholar 

  • Wimer RE, Symington L, Farmer H, Schwartzkroin P (1968) Differences in memory processes between inbred mouse strains C57BL/6J and DBA/2J. J Comp Physiol Psychol 65:126–131

    Article  PubMed  CAS  Google Scholar 

  • Wimer RE, Wimer CC, Vaugh JE, Barber RP, Balvanz BA, Chernow CR (1976) The genetic organization of neuron number in Ammon’s horns of house mouse. Brain Res 118:219–243

    Article  PubMed  CAS  Google Scholar 

  • Yee BK, Feldon J (2009) Distinct forms of prepulse inhibition disruption distinguishable by the associated changes in prepulse-elicited reaction. Behav Brain Res (in press)

  • Yee BK, Balic E, Singer P, Schwerdel C, Grampp T, Gabernet L, Knuesel I, Benke D, Feldon J, Mohler H, Boison D (2006) Disruption of glycine transporter 1 restricted to forebrain neurons is associated with a procognitive and antipsychotic phenotypic profile. J Neurosci 26:3169–3181

    Article  PubMed  CAS  Google Scholar 

  • Yee BK, Chang DL, Feldon J (2004a) The effects of dizocilpine and phencyclidine on prepulse inhibition of the acoustic startle reflex and on prepulse-elicited reactivity in C57BL6 mice. Neuropsychopharmacology 29:1865–1877

    Article  PubMed  CAS  Google Scholar 

  • Yee BK, Chang T, Pietropaolo P, Feldon J (2005) The expression of prepulse inhibition of the acoustic startle reflex as a function of three pulse stimulus intensities, three prepulse stimulus intensities, and three levels of startle responsiveness in C57BL6/J mice. Behav Brain Res 163:265–276

    Article  PubMed  Google Scholar 

  • Yee BK, Feldon J, Rawlins JN (1995) Latent inhibition in rats is abolished by NMDA-induced neuronal loss in the retrohippocampal region, but this lesion effect can be prevented by systemic haloperidol treatment. Behav Neurosci 109:227–240

    Article  PubMed  CAS  Google Scholar 

  • Yee BK, Feldon J, Rawlins JN (1997) Cytotoxic lesions of the retrohippocampal region attenuate latent inhibition but spare the partial reinforcement extinction effect. Exp Brain Res 115:247–256

    Article  PubMed  CAS  Google Scholar 

  • Yee BK, Russig H, Feldon J (2004b) Apomorphine-induced prepulse inhibition disruption is associated with a paradoxical enhancement of prepulse stimulus reactivity. Neuropsychopharmacology 29:240–248

    Article  PubMed  CAS  Google Scholar 

  • Zocchi A, Orsini C, Cabib S, Puglisi-Allegra S (1998) Parallel strain-dependent effect of amphetamine on locomotor activity and dopamine release in the nucleus accumbens: an in vivo study in mice. Neuroscience 82:521–528

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgments

The present study was supported by the Federal Institute of Technology Zurich and the National Centre of Competence in Research (NCCR): Neural Plasticity and Repair funded by the Swiss National Science Foundation.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Benjamin K. Yee.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Singer, P., Feldon, J. & Yee, B.K. Are DBA/2 mice associated with schizophrenia-like endophenotypes? A behavioural contrast with C57BL/6 mice. Psychopharmacology 206, 677–698 (2009). https://doi.org/10.1007/s00213-009-1568-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00213-009-1568-6

Keywords

Navigation