Skip to main content

Advertisement

Log in

Prenatal exposure to infection: a primary mechanism for abnormal dopaminergic development in schizophrenia

  • Review
  • Published:
Psychopharmacology Aims and scope Submit manuscript

Abstract

Rationale

Prenatal exposure to infection is a notable environmental risk factor in the development of schizophrenia. One prevalent hypothesis suggests that infection-induced disruption of early prenatal brain development predisposes the organism to long-lasting structural and functional brain abnormalities. Many of the prenatal infection-induced functional brain abnormalities appear to be closely associated with imbalances in the mesocorticolimbic dopamine system in adult life, suggesting that disruption of functional and structural dopaminergic development may be at the core of the developmental neuropathology associated with psychosis-related abnormalities induced by prenatal exposure to infection.

Objectives

In this review, we integrate recent findings derived from experimental models in animals with parallel research in humans which supports this hypothesis. We thereby highlight the developmental perspective of abnormal DA functions following in-utero exposure to infection in relation to the developmental and maturational mechanisms potentially involved in schizophrenia.

Results

Experimental investigations show that early prenatal immune challenge can lead to the emergence of early structural and functional alterations in the mesocorticolimbic DA system, long before the onset of the full spectrum of psychosis-associated behavioral and cognitive abnormalities in adulthood.

Conclusions

Dopaminergic mal-development in general, and following prenatal immune activation in particular, may represent a primary etiopathological mechanism in the development of schizophrenia and related disorders. This hypothesis differs from the view that dopaminergic abnormalities in schizophrenia may be secondary to abnormalities in other brain structures and/or neurotransmitter systems. The existence of primary dopaminergic mechanisms may have important implications for the identification and early treatment of individuals prodromally symptomatic for schizophrenia.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1

Similar content being viewed by others

References

  • Abi-Dargham A, Moore H (2003) Prefrontal DA transmission at D1 receptors and the pathology of schizophrenia. Neuroscientist 9:404–416

    Article  PubMed  CAS  Google Scholar 

  • Abi-Dargham A, Gil R, Krystal J, Baldwin RM, Seibyl JP, Bowers M, van Dyck CH, Charney DS, Innis RB, Laruelle M (1998) Increased striatal dopamine transmission in schizophrenia: confirmation in a second cohort. Am J Psychiatry 155:761–767

    PubMed  CAS  Google Scholar 

  • Abi-Dargham A, Mawlawi O, Lombardo I, Gil R, Martinez D, Huang Y, Hwang DR, Keilp J, Kochan L, Van Heertum R, Gorman JM, Laruelle M (2002) Prefrontal dopamine D1 receptors and working memory in schizophrenia. J Neurosci 22:3708–3719

    PubMed  CAS  Google Scholar 

  • Alexopoulou L, Holt AC, Medzhitov R, Flavell RA (2001) Recognition of double-stranded RNA and activation of NF-kappaB by Toll-like receptor 3. Nature 413:732–738

    Article  PubMed  CAS  Google Scholar 

  • Altman J, Bayer SA (1981) Development of the brain stem in the rat. V. Thymidine-radiographic study of the time of origin of neurons in the midbrain tegmentum. J Comp Neurol 198:677–716

    Article  PubMed  CAS  Google Scholar 

  • Angrist BM, Gershon S (1970) The phenomenology of experimentally induced amphetamine psychosis—preliminary observations. Biol Psychiatry 2:95–107

    PubMed  CAS  Google Scholar 

  • Aronsson F, Lannebo C, Paucar M, Brask J, Kristensson K, Karlsson H (2002) Persistence of viral RNA in the brain of offspring to mice infected with influenza A/WSN/33 virus during pregnancy. J Neurovirol 8:353–357

    Article  PubMed  CAS  Google Scholar 

  • Ashdown H, Dumont Y, Ng M, Poole S, Boksa P, Luheshi GN (2006) The role of cytokines in mediating effects of prenatal infection on the fetus: implications for schizophrenia. Mol Psychiatry 11:47–55

    Article  PubMed  CAS  Google Scholar 

  • Aubert I, Brana C, Pellevoisin C, Giros B, Caille I, Carles D, Vital C, Bloch B (1997) Molecular anatomy of the development of the human substantia nigra. J Comp Neurol 379:72–87

    Article  PubMed  CAS  Google Scholar 

  • Babulas V, Factor-Litvak P, Goetz R, Schaefer CA, Brown AS (2006) Prenatal exposure to maternal genital and reproductive infections and adult schizophrenia. Am J Psychiatry 163:927–929

    Article  PubMed  Google Scholar 

  • Bäckman C, You ZB, Perlmann T, Hoffer BJ (2003) Elevated locomotor activity without altered striatal dopamine contents in Nurr1 heterozygous mice after acute exposure to methamphetamine. Behav Brain Res 143:95–100

    Article  PubMed  CAS  Google Scholar 

  • Bacopoulos NG, Bhatnagar RK (1977) Correlation between tyrosine hydroxylase activity and catecholamine concentration or turnover in brain regions. J Neurochem 29:639–643

    Article  PubMed  CAS  Google Scholar 

  • Bast T, Pezze MA, Feldon J (2002) Dopamine receptor blockade in the rat medial prefrontal cortex reduces spontaneous and amphetamine-induced activity and does not affect prepulse inhibition. Behav Pharmacol 13:669–673

    PubMed  CAS  Google Scholar 

  • Bayer SA, Wills KV, Triarhou LC, Ghetti B (1995) Time of neuron origin and gradients of neurogenesis in midbrain dopaminergic neurons in the mouse. Exp Brain Res 105:191–199

    PubMed  CAS  Google Scholar 

  • Bell DS (1973) The experimental reproduction of amphetamine psychosis. Arch Gen Psychiatry 29:35–40

    PubMed  CAS  Google Scholar 

  • Boksa P (2008) Maternal infection during pregnancy and schizophrenia. J Psychiatry Neurosci 33:183–185

    PubMed  Google Scholar 

  • Borrell J, Vela JM, Arévalo-Martin A, Molina-Holgado E, Guaza C (2002) Prenatal immune challenge disrupts sensorimotor gating in adult rats. Implications for the etiopathogenesis of schizophrenia. Neuropsychopharmacology 26:204–215

    Article  PubMed  CAS  Google Scholar 

  • Brana C, Caille I, Pellevoisin C, Charron G, Aubert I, Caron MG, Carles D, Vital C, Bloch B (1996) Ontogeny of the striatal neurons expressing the D1 dopamine receptor in humans. J Comp Neurol 370:23–34

    Article  PubMed  CAS  Google Scholar 

  • Breier A, Su TP, Saunders R, Carson RE, Kolachana BS, de Bartolomeis A, Weinberger DR, Weisenfeld N, Malhotra AK, Eckelman WC, Pickar D (1997) Schizophrenia is associated with elevated amphetamine-induced synaptic dopamine concentrations: evidence from a novel positron emission tomography method. Proc Natl Acad Sci U S A 94:2569–2574

    Article  PubMed  CAS  Google Scholar 

  • Broersen LM, Feldon J, Weiner I (1999) Dissociative effects of apomorphine infusions into the medial prefrontal cortex of rats on latent inhibition, prepulse inhibition and amphetamine-induced locomotion. Neuroscience 94:39–46

    Article  PubMed  CAS  Google Scholar 

  • Brown AS (2006) Prenatal infection as a risk factor for schizophrenia. Schizophr Bull 32:200–202

    Article  PubMed  Google Scholar 

  • Brown AS, Susser ES (2002) In utero infection and adult schizophrenia. Ment Retard Dev Disabil Res Rev 8:51–57

    Article  PubMed  Google Scholar 

  • Brown AS, Susser ES (2008) Prenatal nutritional deficiency and risk of adult schizophrenia. Schizophr Bull 34:1054–1063

    Article  PubMed  Google Scholar 

  • Brown AS, Susser ES, Butler PD, Richardson Andrews R, Kaufmann CA, Gorman JM (1996) Neurobiological plausibility of prenatal nutritional deprivation as a risk factor for schizophrenia. J Nerv Ment Dis 184:71–85

    Article  PubMed  CAS  Google Scholar 

  • Brown AS, Cohen P, Harkavy-Friedman J, Babulas V, Malaspina D, Gorman JM, Susser ES (2001) A.E. Bennett Research Award. Prenatal rubella, premorbid abnormalities, and adult schizophrenia. Biol Psychiatry 49:473–486

    Article  PubMed  CAS  Google Scholar 

  • Brown AS, Begg MD, Gravenstein S, Schaefer CA, Wyatt RJ, Bresnahan M, Babulas VP, Susser ES (2004) Serologic evidence of prenatal influenza in the etiology of schizophrenia. Arch Gen Psychiatry 61:774–780

    Article  PubMed  Google Scholar 

  • Brown AS, Schaefer CA, Quesenberry CP Jr, Liu L, Babulas VP, Susser ES (2005) Maternal exposure to toxoplasmosis and risk of schizophrenia in adult offspring. Am J Psychiatry 162:767–773

    Article  PubMed  Google Scholar 

  • Buka SL, Tsuang MT, Torrey EF, Klebanoff MA, Bernstein D, Yolken RH (2001) Maternal infections and subsequent psychosis among offspring. Arch Gen Psychiatry 58:1032–1037

    Article  PubMed  CAS  Google Scholar 

  • Burbach JP, Smidt MP (2006) Molecular programming of stem cells into mesodiencephalic dopaminergic neurons. Trends Neurosci 29:601–603

    Article  PubMed  CAS  Google Scholar 

  • Carlsson A (1974) Antipsychotic drugs and catecholamine synapses. J Psychiatr Res 11:57–64

    Article  PubMed  CAS  Google Scholar 

  • Carlsson A, Waters N, Holm-Waters S, Tedroff J, Nilsson M, Carlsson ML (2001) Interactions between monoamines, glutamate, and GABA in schizophrenia: new evidence. Annu Rev Pharmacol Toxicol 41:237–260

    Article  PubMed  CAS  Google Scholar 

  • Collip D, Myin-Germeys I, Van Os J (2008) Does the concept of “sensitization” provide a plausible mechanism for the putative link between the environment and schizophrenia? Schizophr Bull 34:220–225

    Article  PubMed  Google Scholar 

  • Corcoran C, Malaspina D, Hercher L (2005) Prodromal interventions for schizophrenia vulnerability: the risks of being “at risk”. Schizophr Res 73:173–184

    Article  PubMed  Google Scholar 

  • Cornblatt BA, Auther AM (2005) Treating early psychosis: who, what, and when? Dialogues Clin Neurosci 7:39–49

    PubMed  Google Scholar 

  • Crawley JC, Crow TJ, Johnstone EC, Oldland SR, Owen F, Owens DG, Smith T, Veall N, Zanelli GD (1986) Uptake of 77Br-spiperone in the striata of schizophrenic patients and controls. Nucl Med Commun 7:599–607

    Article  PubMed  CAS  Google Scholar 

  • Creese I, Iversen SD (1975) The pharmacological and anatomical substrates of the amphetamine response in the rat. Brain Res 83:419–436

    Article  PubMed  CAS  Google Scholar 

  • Cunningham C, Campion S, Teeling J, Felton L, Perry VH (2007) The sickness behavior and CNS inflammatory mediator profile induced by systemic challenge of mice with synthetic double-stranded RNA (poly I:C). Brain Behav Immun 21:490–502

    Article  PubMed  CAS  Google Scholar 

  • de Jong IE, van den Buuse M (2006) SCH 23390 in the prefrontal cortex enhances the effect of apomorphine on prepulse inhibition of rats. Neuropharmacology 51:438–446

    Article  PubMed  CAS  Google Scholar 

  • Dean K, Murray RM (2005) Environmental risk factors for psychosis. Dialogues Clin Neurosci 7:69–80

    PubMed  Google Scholar 

  • Dean B, Pavey G, Scarr E, Goeringer K, Copolov DL (2004) Measurement of dopamine D2-like receptors in postmortem CNS and pituitary: differential regional changes in schizophrenia. Life Sci 74:3115–3131

    Article  PubMed  CAS  Google Scholar 

  • Deutch AY (1992) The regulation of subcortical dopamine systems by the prefrontal cortex: interactions of central dopamine systems and the pathogenesis of schizophrenia. J Neural Transm (Suppl) 36:61–89

    CAS  Google Scholar 

  • Di Forti M, Lappin JM, Murray RM (2007) Risk factors for schizophrenia—all roads lead to dopamine. Eur Neuropsychopharmacol 17(Suppl 2):S101–S107

    PubMed  Google Scholar 

  • Eells JB, Lipska BK, Yeung SK, Misler JA, Nikodem VM (2002) Nurr1-null heterozygous mice have reduced mesolimbic and mesocortical dopamine levels and increased stress-induced locomotor activity. Behav Brain Res 136:267–275

    Article  PubMed  CAS  Google Scholar 

  • Ellenbroek BA, Budde S, Cools AR (1996) Prepulse inhibition and latent inhibition: the role of dopamine in the medial prefrontal cortex. Neuroscience 75:535–542

    Article  PubMed  CAS  Google Scholar 

  • Farde L, Wiesel FA, Stone-Elander S, Halldin C, Nordström AL, Hall H, Sedvall G (1990) D2 dopamine receptors in neuroleptic-naive schizophrenic patients. A positron emission tomography study with [11C]raclopride. Arch Gen Psychiatry 47:213–219

    PubMed  CAS  Google Scholar 

  • Fatemi SH (2005) Neuropsychiatric disorders and infection. Dunitz–Taylor & Francis, London

    Google Scholar 

  • Fatemi SH, Reutiman TJ, Folsom TD, Huang H, Oishi K, Mori S, Smee DF, Pearce DA, Winter C, Sohr R, Juckel G (2008) Maternal infection leads to abnormal gene regulation and brain atrophy in mouse offspring: implications for genesis of neurodevelopmental disorders. Schizophr Res 99:56–70

    Article  PubMed  Google Scholar 

  • Feinberg I (1982) Schizophrenia: caused by a fault in programmed synaptic elimination during adolescence? J Psychiatr Res 17:319–334

    Article  PubMed  Google Scholar 

  • Finlay JM (2001) Mesoprefrontal dopamine neurons and schizophrenia: role of developmental abnormalities. Schizophr Bull 27:431–442

    PubMed  CAS  Google Scholar 

  • Finlay JM, Zigmond MJ (1997) The effects of stress on central dopaminergic neurons: possible clinical implications. Neurochem Res 22:1387–1394

    Article  PubMed  CAS  Google Scholar 

  • Fortier ME, Joober R, Luheshi GN, Boksa P (2004a) Maternal exposure to bacterial endotoxin during pregnancy enhances amphetamine-induced locomotion and startle responses in adult rat offspring. J Psychiatr Res 38:335–345

    Article  PubMed  Google Scholar 

  • Fortier ME, Kent S, Ashdown H, Poole S, Boksa P, Luheshi GN (2004b) The viral mimic, polyinosinic:polycytidylic acid, induces fever in rats via an interleukin-1-dependent mechanism. Am J Physiol Regul Integr Comp Physiol 287:R759–R766

    PubMed  CAS  Google Scholar 

  • Fortier ME, Luheshi GN, Boksa P (2007) Effects of prenatal infection on prepulse inhibition in the rat depend on the nature of the infectious agent and the stage of pregnancy. Behav Brain Res 181:270–277

    Article  PubMed  Google Scholar 

  • Gardner R, Connell PH (1972) Amphetamine and other non-opioid drug users attending a special drug dependence clinic. Br Med J 2:322–325

    Article  PubMed  CAS  Google Scholar 

  • Gilmore JH, Jarskog LF (1997) Exposure to infection and brain development: cytokines in the pathogenesis of schizophrenia. Schizophr Res 24:365–367

    Article  PubMed  CAS  Google Scholar 

  • Goldman-Rakic PS (1996) Regional and cellular fractionation of working memory. Proc Natl Acad Sci U S A 93:13473–13480

    Article  PubMed  CAS  Google Scholar 

  • Goldman-Rakic PS (1998) The cortical dopamine system: role in memory and cognition. Adv Pharmacol 42:707–711

    Article  PubMed  CAS  Google Scholar 

  • Goto Y, Grace AA (2007) The dopamine system and the pathophysiology of schizophrenia: a basic science perspective. Int Rev Neurobiol 78C:41–C68

    Article  CAS  Google Scholar 

  • Goto Y, Grace AA (2008) Limbic and cortical information processing in the nucleus accumbens. Trends Neurosci 31:552–558

    Article  PubMed  CAS  Google Scholar 

  • Grace AA (2000) Gating of information flow within the limbic system and the pathophysiology of schizophrenia. Brain Res Brain Res Rev 31:330–341

    Article  PubMed  CAS  Google Scholar 

  • Grace AA (2004) Developmental dysregulation of the dopamine system and the pathophysiology of schizophrenia. In: Keshavan MS, Kennedy J, Murray R (eds) Neurodevelopment and schizophrenia, 2nd edn. Cambridge University Press, Cambridge, pp 273–294

    Google Scholar 

  • Gray JA (1998) Integrating schizophrenia. Schizophr Bull 24:249–266

    PubMed  CAS  Google Scholar 

  • Gray JA, Feldon J, Rawlins JNP, Hemsley DR, Smith AD (1991) The neuropsychology of schizophrenia. Behav Brain Sci 14:1–84

    Google Scholar 

  • Groenewegen HJ (2003) The basal ganglia and motor control. Neural Plast 10:107–120

    Article  PubMed  Google Scholar 

  • Guillin O, Abi-Dargham A, Laruelle M (2007) Neurobiology of dopamine in schizophrenia. Int Rev Neurobiol 78:1–39

    Article  PubMed  CAS  Google Scholar 

  • Hains AB, Arnsten AF (2008) Molecular mechanisms of stress-induced prefrontal cortical impairment: implications for mental illness. Learn Mem 15:551–564

    Article  PubMed  Google Scholar 

  • Harrison PJ, Weinberger DR (2005) Schizophrenia genes, gene expression, and neuropathology: on the matter of their convergence. Mol Psychiatry 10:40–68

    Article  PubMed  CAS  Google Scholar 

  • Heidbreder C, Feldon J (1998) Amphetamine-induced neurochemical and locomotor responses are expressed differentially across the anteroposterior axis of the core and shell subterritories of the nucleus accumbens. Synapse 29:310–322

    Article  PubMed  CAS  Google Scholar 

  • Hietala J, Syvälahti E, Vuorio K, Räkköläinen V, Bergman J, Haaparanta M, Solin O, Kuoppamäki M, Kirvelä O, Ruotsalainen U et al (1995) Presynaptic dopamine function in striatum of neuroleptic-naive schizophrenic patients. Lancet 346:1130–1131

    Article  PubMed  CAS  Google Scholar 

  • Hietala J, Syvälahti E, Vilkman H, Vuorio K, Räkköläinen V, Bergman J, Haaparanta M, Solin O, Kuoppamäki M, Eronen E, Ruotsalainen U, Salokangas RK (1999) Depressive symptoms and presynaptic dopamine function in neuroleptic-naive schizophrenia. Schizophr Res 35:41–50

    Article  PubMed  CAS  Google Scholar 

  • Horger BA, Roth RH (1996) The role of mesoprefrontal dopamine neurons in stress. Crit Rev Neurobiol 10:395–418

    PubMed  CAS  Google Scholar 

  • Howes OD, McDonald C, Cannon M, Arseneault L, Boydell J, Murray RM (2004) Pathways to schizophrenia: the impact of environmental factors. Int J Neuropsychopharmacol 7(Suppl 1):S7–S13

    Article  PubMed  CAS  Google Scholar 

  • Howes OD, Montgomery AJ, Asselin MC, Murray RM, Grasby PM, McGuire PK (2007) Molecular imaging studies of the striatal dopaminergic system in psychosis and predictions for the prodromal phase of psychosis. Br J Psychiatry 51:s13–s18

    Article  Google Scholar 

  • Howes OD, Montgomery AJ, Asselin MC, Murray RM, Valli I, Tabraham P, Bramon-Bosch E, Valmaggia L, Johns L, Broome M, McGuire PK, Grasby PM (2009) Elevated striatal dopamine function linked to prodromal signs of schizophrenia. Arch Gen Psychiatry 66:13–20

    Article  PubMed  Google Scholar 

  • Jarskog LF, Miyamoto S, Lieberman JA (2007) Schizophrenia: new pathological insights and therapies. Annu Rev Med 58:49–61

    Article  PubMed  CAS  Google Scholar 

  • Joel D, Weiner I (2000) The connections of the dopaminergic system with the striatum in rats and primates: an analysis with respect to the functional and compartmental organization of the striatum. Neuroscience 96:451–474

    Article  PubMed  CAS  Google Scholar 

  • Kellendonk C, Simpson EH, Polan HJ, Malleret G, Vronskaya S, Winiger V, Moore H, Kandel ER (2006) Transient and selective overexpression of dopamine D2 receptors in the striatum causes persistent abnormalities in prefrontal cortex functioning. Neuron 49:603–615

    Article  PubMed  CAS  Google Scholar 

  • Keshavan MS, Hogarty GE (1999) Brain maturational processes and delayed onset in schizophrenia. Dev Psychopathol 11:525–543

    Article  PubMed  CAS  Google Scholar 

  • Kimura M, Toth LA, Agostini H, Cady AB, Majde JA, Krueger JM (1994) Comparison of acute phase responses induced in rabbits by lipopolysaccharide and double-stranded RNA. Am J Physiol 267:R1596–R1605

    PubMed  CAS  Google Scholar 

  • Klejbor I, Myers JM, Hausknecht K, Corso TD, Gambino AS, Morys J, Maher PA, Hard R, Richards J, Stachowiak EK, Stachowiak MK (2006) Fibroblast growth factor receptor signaling affects development and function of dopamine neurons—inhibition results in a schizophrenia-like syndrome in transgenic mice. J Neurochem 97:1243–1258

    Article  PubMed  CAS  Google Scholar 

  • Klosterkötter J, Hellmich M, Steinmeyer EM, Schultze-Lutter F (2001) Diagnosing schizophrenia in the initial prodromal phase. Arch Gen Psychiatry 58:158–164

    Article  PubMed  Google Scholar 

  • Koch M (1999) The neurobiology of startle. Prog Neurobiol 59:107–128

    Article  PubMed  CAS  Google Scholar 

  • Koch M, Bubser M (1994) Deficient sensorimotor gating after 6-hydroxydopamine lesion of the rat medial prefrontal cortex is reversed by haloperidol. Eur J Neurosci 6:1837–1845

    Article  PubMed  CAS  Google Scholar 

  • Koch M, Schnitzler HU (1997) The acoustic startle response in rats—circuits mediating evocation, inhibition and potentiation. Behav Brain Res 89:35–49

    Article  PubMed  CAS  Google Scholar 

  • Koenig JI, Kirkpatrick B, Lee P (2002) Glucocorticoid hormones and early brain development in schizophrenia. Neuropsychopharmacology 27:309–318

    Article  PubMed  CAS  Google Scholar 

  • Lacroix L, Broersen LM, Feldon J, Weiner I (2000) Effects of local infusions of dopaminergic drugs into the medial prefrontal cortex of rats on latent inhibition, prepulse inhibition and amphetamine induced activity. Behav Brain Res 107:111–121

    Article  PubMed  CAS  Google Scholar 

  • Laruelle M (2000) The role of endogenous sensitization in the pathophysiology of schizophrenia: implications from recent brain imaging studies. Brain Res Brain Res Rev 31:371–384

    Article  PubMed  CAS  Google Scholar 

  • Laruelle M, Abi-Dargham A, van Dyck CH, Gil R, D'Souza CD, Erdos J, McCance E, Rosenblatt W, Fingado C, Zoghbi SS, Baldwin RM, Seibyl JP, Krystal JH, Charney DS, Innis RB (1996) Single photon emission computerized tomography imaging of amphetamine-induced dopamine release in drug-free schizophrenic subjects. Proc Natl Acad Sci U S A 93:9235–9240

    Article  PubMed  CAS  Google Scholar 

  • Laruelle M, Abi-Dargham A, Gil R, Kegeles L, Innis R (1999) Increased dopamine transmission in schizophrenia: relationship to illness phases. Biol Psychiatry 46:56–72

    Article  PubMed  CAS  Google Scholar 

  • Laruelle M, Kegeles LS, Abi-Dargham A (2003) Glutamate, dopamine, and schizophrenia: from pathophysiology to treatment. Ann N Y Acad Sci 1003:138–158

    Article  PubMed  CAS  Google Scholar 

  • Lieberman JA, Kane JM, Alvir J (1987) Provocative tests with psychostimulant drugs in schizophrenia. Psychopharmacology 91:415–433

    Article  PubMed  CAS  Google Scholar 

  • Lieberman JA, Perkins D, Belger A, Chakos M, Jarskog F, Boteva K, Gilmore J (2001) The early stages of schizophrenia: speculations on pathogenesis, pathophysiology, and therapeutic approaches. Biol Psychiatry 50:884–897

    Article  PubMed  CAS  Google Scholar 

  • Lindström LH, Gefvert O, Hagberg G, Lundberg T, Bergström M, Hartvig P, Långström B (1999) Increased dopamine synthesis rate in medial prefrontal cortex and striatum in schizophrenia indicated by L-(beta-11C) DOPA and PET. Biol Psychiatry 46:681–688

    Article  PubMed  Google Scholar 

  • Lipska BK (2004) Using animal models to test a neurodevelopmental hypothesis of schizophrenia. J Psychiatry Neurosci 29:282–286

    PubMed  Google Scholar 

  • Lipska BK, Weinberger DR (2000) To model a psychiatric disorder in animals: schizophrenia as a reality test. Neuropsychopharmacology 23:223–239

    Article  PubMed  CAS  Google Scholar 

  • Mackay AV, Iversen LL, Rossor M, Spokes E, Bird E, Arregui A, Creese I, Synder SH (1982) Increased brain dopamine and dopamine receptors in schizophrenia. Arch Gen Psychiatry 39:991–997

    PubMed  CAS  Google Scholar 

  • Marti J, Wills KV, Ghetti B, Bayer SA (2002) A combined immunohistochemical and autoradiographic method to detect midbrain dopaminergic neurons and determine their time of origin. Brain Res Brain Res Protoc 9:197–205

    Article  PubMed  CAS  Google Scholar 

  • Martinot JL, Peron-Magnan P, Huret JD, Mazoyer B, Baron JC, Boulenger JP, Loc'h C, Maziere B, Caillard V, Loo H et al (1990) Striatal D2 dopaminergic receptors assessed with positron emission tomography and [76Br]bromospiperone in untreated schizophrenic patients. Am J Psychiatry 147:44–50

    PubMed  CAS  Google Scholar 

  • McDonald C, Murray RM (2000) Early and late environmental factors for schizophrenia. Brain Res Rev 31:130–137

    Article  PubMed  CAS  Google Scholar 

  • McEwen BS (2001) Plasticity of the hippocampus: adaptation to chronic stress and allostatic load. Ann N Y Acad Sci 933:265–277

    Article  PubMed  CAS  Google Scholar 

  • McEwen BS (2007) Physiology and neurobiology of stress and adaptation: central role of the brain. Physiol Rev 87:873–904

    Article  PubMed  Google Scholar 

  • McGlashan TH (1996) Early detection and intervention in schizophrenia: research. Schizophr Bull 22:327–345

    PubMed  CAS  Google Scholar 

  • Mednick SA, Machon RA, Huttunen MO, Bonett D (1988) Adult schizophrenia following prenatal exposure to an influenza epidemic. Arch Gen Psychiatry 45:189–192

    PubMed  CAS  Google Scholar 

  • Meltzer HY, Stahl SM (1976) The dopamine hypothesis of schizophrenia: a review. Schizophr Bull 2:19–76

    PubMed  CAS  Google Scholar 

  • Meyer U, Feldon J (2009) Neural basis of psychosis-related behaviour in the infection model of schizophrenia. Behav Brain Res, in press (Epub ahead of print [PMID: 19154759])

  • Meyer U, Feldon J, Schedlowski M, Yee BK (2005) Towards an immuno-precipitated neurodevelopmental animal model of schizophrenia. Neurosci Biobehav Rev 29:913–947

    Article  PubMed  CAS  Google Scholar 

  • Meyer U, Feldon J, Schedlowski M, Yee BK (2006a) Immunological stress at the maternal–foetal interface: a link between neurodevelopment and adult psychopathology. Brain Behav Immun 20:378–388

    Article  PubMed  CAS  Google Scholar 

  • Meyer U, Nyffeler M, Engler A, Urwyler A, Schedlowski M, Knuesel I, Yee BK, Feldon J (2006b) The time of prenatal immune challenge determines the specificity of inflammation-mediated brain and behavioral pathology. J Neurosci 26:4752–4762

    Article  PubMed  CAS  Google Scholar 

  • Meyer U, Schwendener S, Feldon J, Yee BK (2006c) Prenatal and postnatal maternal contributions in the infection model of schizophrenia. Exp Brain Res 173:243–257

    Article  PubMed  Google Scholar 

  • Meyer U, Yee BK, Feldon J (2007) The neurodevelopmental impact of prenatal infections at different times of pregnancy: the earlier the worse? Neuroscientist 13:241–256

    Article  PubMed  CAS  Google Scholar 

  • Meyer U, Feldon J, Yee BK (2008a) A review of the fetal brain cytokine imbalance hypothesis of schizophrenia. Schizophr Bull, 2008; in press (Epub ahead of print [PMID: 18408229])

  • Meyer U, Murray PJ, Urwyler A, Yee BK, Schedlowski M, Feldon J (2008b) Adult behavioral and pharmacological dysfunctions following disruption of the fetal brain balance between pro-inflammatory and IL-10-mediated anti-inflammatory signaling. Mol Psychiatry 13:208–221

    Article  PubMed  CAS  Google Scholar 

  • Meyer U, Nyffeler M, Schwendener S, Knuesel I, Yee BK, Feldon J (2008c) Relative prenatal and postnatal maternal contributions to schizophrenia-related neurochemical dysfunction after in utero immune challenge. Neuropsychopharmacology 33:441–456

    Article  PubMed  Google Scholar 

  • Meyer U, Nyffeler M, Yee BK, Knuesel I, Feldon J (2008d) Adult brain and behavioral pathological markers of prenatal immune challenge during early/middle and late fetal development in mice. Brain Behav Immun 22:469–486

    Article  PubMed  CAS  Google Scholar 

  • Meyer U, Engler A, Weber L, Schedlowski M, Feldon J (2008e) Preliminary evidence for a modulation of fetal dopaminergic development by maternal immune activation during pregnancy. Neuroscience 154:701–709

    Article  PubMed  CAS  Google Scholar 

  • Meyer U, Spoerri E, Yee BK, Schwarz MJ, Feldon J (2008f) Evaluating early preventive antipsychotic and antidepressant drug treatment in an infection-based neurodevelopmental mouse model of schizophrenia. Schizophr Bull, in press (Epub ahead of print [PMID: 18845557])

  • Moore TM, Brown T, Cade M, Eells JB (2008) Alterations in amphetamine-stimulated dopamine overflow due to the Nurr1-null heterozygous genotype and postweaning isolation. Synapse 62:764–774

    Article  PubMed  CAS  Google Scholar 

  • Mortensen PB, Nørgaard-Pedersen B, Waltoft BL, Sørensen TL, Hougaard D, Torrey EF, Yolken RH (2007) Toxoplasma gondii as a risk factor for early-onset schizophrenia: analysis of filter paper blood samples obtained at birth. Biol Psychiatry 61:688–693

    Article  PubMed  Google Scholar 

  • Moser PC, Hitchcock JM, Lister S, Moran PM (2000) The pharmacology of latent inhibition as an animal model of schizophrenia. Brain Res Brain Res Rev 33:275–307

    Article  PubMed  CAS  Google Scholar 

  • Murray RM, O'Callaghan E, Castle DJ, Lewis SW (1992) A neurodevelopmental approach to the classification of schizophrenia. Schizophr Bull 18:319–332

    PubMed  CAS  Google Scholar 

  • Murray RM, Lappin J, Di Forti M (2008) Schizophrenia: from developmental deviance to dopamine dysregulation. Eur Neuropsychopharmacol 18(Suppl 3):S129–S134

    Article  PubMed  CAS  Google Scholar 

  • Nawa H, Takei N (2006) Recent progress in animal modeling of immune inflammatory processes in schizophrenia: implication of specific cytokines. Neurosci Res 56:2–13

    Article  PubMed  CAS  Google Scholar 

  • Nieoullon A (2002) Dopamine and the regulation of cognition and attention. Prog Neurobiol 67:53–83

    Article  PubMed  CAS  Google Scholar 

  • O’Donnell P, Grace AA (1998) Dysfunctions in multiple interrelated systems as the neurobiological bases of schizophrenic symptom clusters. Schizophr Bull 24:267–283

    PubMed  Google Scholar 

  • Okubo Y, Suhara T, Sudo Y, Toru M (1997a) Possible role of dopamine D1 receptors in schizophrenia. Mol Psychiatry 2:291–292

    Article  PubMed  CAS  Google Scholar 

  • Okubo Y, Suhara T, Suzuki K, Kobayashi K, Inoue O, Terasaki O, Someya Y, Sassa T, Sudo Y, Matsushima E, Iyo M, Tateno Y, Toru M (1997b) Decreased prefrontal dopamine D1 receptors in schizophrenia revealed by PET. Nature 385:634–636

    Article  PubMed  CAS  Google Scholar 

  • Opler MG, Susser ES (2005) Fetal environment and schizophrenia. Environ Health Perspect 113:1239–1242

    PubMed  CAS  Google Scholar 

  • Ozawa K, Hashimoto K, Kishimoto T, Shimizu E, Ishikura H, Iyo M (2006) Immune activation during pregnancy in mice leads to dopaminergic hyperfunction and cognitive impairment in the offspring: a neurodevelopmental animal model of schizophrenia. Biol Psychiatry 59:546–554

    Article  PubMed  CAS  Google Scholar 

  • Pani L, Porcella A, Gessa GL (2000) The role of stress in the pathophysiology of the dopaminergic system. Mol Psychiatry 5:14–21

    Article  PubMed  CAS  Google Scholar 

  • Pantelis C, Yücel M, Wood SJ, Velakoulis D, Sun D, Berger G, Stuart GW, Yung A, Phillips L, McGorry PD (2005a) Structural brain imaging evidence for multiple pathological processes at different stages of brain development in schizophrenia. Schizophr Bull 31:672–696

    Article  PubMed  Google Scholar 

  • Pantelis C, Yücel M, Wood SJ, Velakoulis D, Sun D, Berger G, Stuart GW, Yung A, Phillips L, McGorry PD (2005b) Structural brain imaging evidence for multiple pathological processes at different stages of brain development in schizophrenia. Schizophr Bull 31:672–696

    Article  PubMed  Google Scholar 

  • Patterson PH (2007) Maternal effects on schizophrenia risk. Science 318:576–577

    Article  PubMed  CAS  Google Scholar 

  • Pezze MA, Feldon J (2004) Mesolimbic dopaminergic pathways in fear conditioning. Prog Neurobiol 74:301–320

    Article  PubMed  CAS  Google Scholar 

  • Phillips LJ, McGorry PD, Garner B, Thompson KN, Pantelis C, Wood SJ, Berger G (2006) Stress, the hippocampus and the hypothalamic–pituitary–adrenal axis: implications for the development of psychotic disorders. Aust N Z J Psychiatry 40:725–741

    Article  PubMed  Google Scholar 

  • Pickel VM, Specht LA, Sumal KK, Joh TH, Reis DJ, Hervonen A (1980) Immunocytochemical localization of tyrosine hydroxylase in the human fetal nervous system. J Comp Neurol 194:465–474

    Article  PubMed  CAS  Google Scholar 

  • Pijnenburg AJ, Honig WM, Van der Heyden JA, Van Rossum JM (1976) Effects of chemical stimulation of the mesolimbic dopamine system upon locomotor activity. Eur J Pharmacol 35:45–58

    Article  PubMed  CAS  Google Scholar 

  • Rapoport JL, Addington AM, Frangou S, Psych MR (2005) The neurodevelopmental model of schizophrenia: update 2005. Mol Psychiatry 10:434–449

    Article  PubMed  CAS  Google Scholar 

  • Reynolds GP, Reynolds LM, Riederer P, Jellinger K, Gabriel E (1980) Dopamine receptors and schizophrenia: drug effect or illness. Lancet 2:1251

    Article  PubMed  CAS  Google Scholar 

  • Riddle R, Pollock JD (2003) Making connections: the development of mesencephalic dopaminergic neurons. Brain Res Dev Brain Res 147:3–21

    Article  PubMed  CAS  Google Scholar 

  • Robbins TW (2005) Chemistry of the mind: neurochemical modulation of prefrontal cortical function. J Comp Neurol 493:140–146

    Article  PubMed  CAS  Google Scholar 

  • Rojas P, Joodmardi E, Hong Y, Perlmann T, Ogren SO (2007) Adult mice with reduced Nurr1 expression: an animal model for schizophrenia. Mol Psychiatry 12:756–766

    Article  PubMed  CAS  Google Scholar 

  • Romeo RD, McEwen BS (2006) Stress and the adolescent brain. Ann N Y Acad Sci 1094:202–214

    Article  PubMed  CAS  Google Scholar 

  • Romero E, Ali C, Molina-Holgado E, Castellano B, Guaza C, Borrell J (2007) Neurobehavioral and immunological consequences of prenatal immune activation in rats. Influence of antipsychotics. Neuropsychopharmacology 32:1791–1804

    Article  PubMed  CAS  Google Scholar 

  • Romero E, Guaza C, Castellano B, Borrell J (2008) Ontogeny of sensorimotor gating and immune impairment induced by prenatal immune challenge in rats: implications for the etiopathology of schizophrenia. Mol Psychiatry, 2008; in press (Epub ahead of print [PMID: 18414405])

  • Ross CA, Margolis RL, Reading SA, Pletnikov M, Coyle JT (2006) Neurobiology of schizophrenia. Neuron 52:139–153

    Article  PubMed  CAS  Google Scholar 

  • Seeman P (1987) Dopamine receptors and the dopamine hypothesis of schizophrenia. Synapse 1:133–152

    Article  PubMed  CAS  Google Scholar 

  • Seeman P (2006) Targeting the dopamine D2 receptor in schizophrenia. Expert Opin Ther Targets 10:515–531

    Article  PubMed  CAS  Google Scholar 

  • Shi L, Fatemi SH, Sidwell RW, Patterson PH (2003) Maternal influenza infection causes marked behavioral and pharmacological changes in the offspring. J Neurosci 23:297–302

    PubMed  Google Scholar 

  • Shoemaker JM, Saint Marie RL, Bongiovanni MJ, Neary AC, Tochen LS, Swerdlow NR (2005) Prefrontal D1 and ventral hippocampal N-methyl-D-aspartate regulation of startle gating in rats. Neuroscience 135:385–394

    Article  PubMed  CAS  Google Scholar 

  • Sillitoe RV, Vogel MW (2008) Desire, disease, and the origins of the dopaminergic system. Schizophr Bull 34:212–219

    Article  PubMed  Google Scholar 

  • Smidt MP, Burbach JP (2007) How to make a mesodiencephalic dopaminergic neuron. Nat Rev Neurosci 8:21–32

    Article  PubMed  CAS  Google Scholar 

  • Smith SE, Li J, Garbett K, Mirnics K, Patterson PH (2007) Maternal immune activation alters fetal brain development through interleukin-6. J Neurosci 27:10695–10702

    Article  PubMed  CAS  Google Scholar 

  • Smits SM, Ponnio T, Conneely OM, Burbach JP, Smidt MP (2003) Involvement of Nurr1 in specifying the neurotransmitter identity of ventral midbrain dopaminergic neurons. Eur J Neurosci 18:1731–1738

    Article  PubMed  Google Scholar 

  • Snyder SH (1976) The dopamine hypothesis of schizophrenia: focus on the dopamine receptor. Am J Psychiatry 133:197–202

    PubMed  CAS  Google Scholar 

  • Soliman A, O'Driscoll GA, Pruessner J, Holahan AL, Boileau I, Gagnon D, Dagher A (2008) Stress-induced dopamine release in humans at risk of psychosis: a [11C]raclopride PET study. Neuropsychopharmacology 33:2033–2041

    Article  PubMed  CAS  Google Scholar 

  • Sørensen HJ, Mortensen EL, Reinisch JM, Mednick SA (2008) Association between prenatal exposure to bacterial infection and risk of schizophrenia. Schizophr Bull, in press (Epub ahead of print[PMID: 18832344])

  • Spanagel R, Weiss F (1999) The dopamine hypothesis of reward: past and current status. Trends Neurosci 22:521–527

    Article  PubMed  CAS  Google Scholar 

  • Sullivan R, Wilson DA, Feldon J, Yee BK, Meyer U, Richter-Levin G, Avi A, Michael T, Gruss M, Bock J, Helmeke C, Braun K (2006) The International Society for Developmental Psychobiology annual meeting symposium: impact of early life experiences on brain and behavioral development. Dev Psychobiol 48:583–602

    Article  PubMed  CAS  Google Scholar 

  • Susser E, St Clair D, He L (2008) Latent effects of prenatal malnutrition on adult health: the example of schizophrenia. Ann N Y Acad Sci 1136:185–192

    Article  PubMed  Google Scholar 

  • Suvisaari J, Haukka J, Tanskanen A, Hovi T, Lonnqvist J (1999) Association between prenatal exposure to poliovirus infection and adult schizophrenia. Am J Psychiatry 156:1100–1102

    PubMed  CAS  Google Scholar 

  • Swerdlow NR, Geyer MA (1998) Using an animal model of deficient sensorimotor gating to study the pathophysiology and new treatments of schizophrenia. Schizophr Bull 24:285–301

    PubMed  CAS  Google Scholar 

  • Swerdlow NR, Geyer MA, Braff DL (2001) Neural circuit regulation of prepulse inhibition of startle in the rat: current knowledge and future challenges. Psychopharmacology 156:194–215

    Article  PubMed  CAS  Google Scholar 

  • Swerdlow NR, Shoemaker JM, Bongiovanni MJ, Neary AC, Tochen LS, Saint Marie RL (2005) Reduced startle gating after D1 blockade: effects of concurrent D2 blockade. Pharmacol Biochem Behav 82:293–299

    Article  PubMed  CAS  Google Scholar 

  • Swerdlow NR, Shoemaker JM, Kuczenski R, Bongiovanni MJ, Neary AC, Tochen LS, Saint Marie RL (2006) Forebrain D1 function and sensorimotor gating in rats: effects of D1 blockade, frontal lesions and dopamine denervation. Neurosci Lett 402:40–45

    Article  PubMed  CAS  Google Scholar 

  • Takeuchi O, Akira S (2007) Recognition of viruses by innate immunity. Immunol Rev 220:214–224

    Article  PubMed  CAS  Google Scholar 

  • Tamminga CA, Holcomb HH (2005) Phenotype of schizophrenia: a review and formulation. Mol Psychiatry 10:27–39

    Article  PubMed  CAS  Google Scholar 

  • Torrey EF, Rawlings R, Waldman IN (1988) Schizophrenic births and viral diseases in two states. Schizophr Res 1:73–77

    Article  PubMed  CAS  Google Scholar 

  • Toru M, Nishikawa T, Mataga N, Takashima M (1982) Dopamine metabolism increases in post-mortem schizophrenic basal ganglia. J Neural Transm 54:181–191

    Article  PubMed  CAS  Google Scholar 

  • Toru M, Watanabe S, Shibuya H, Nishikawa T, Noda K, Mitsushio H, Ichikawa H, Kurumaji A, Takashima M, Mataga N et al (1988) Neurotransmitters, receptors and neuropeptides in post-mortem brains of chronic schizophrenic patients. Acta Psychiatr Scand 78:121–137

    Article  PubMed  CAS  Google Scholar 

  • Traynor TR, Majde JA, Bohnet SG, Krueger JM (2004) Intratracheal double-stranded RNA plus interferon-gamma: a model for analysis of the acute phase response to respiratory viral infections. Life Sci 74:2563–2576

    Article  PubMed  CAS  Google Scholar 

  • Triantafilou M, Triantafilou K (2002) Lipopolysaccharide recognition: CD14, TLRs and the LPS-activation cluster. Trends Immunol 23:301–304

    Article  PubMed  CAS  Google Scholar 

  • Tsujimoto S (2008) The prefrontal cortex: functional neural development during early childhood. Neuroscientist 14:345–358

    Article  PubMed  Google Scholar 

  • Tzschentke TM (2001) Pharmacology and behavioral pharmacology of the mesocortical dopamine system. Prog Neurobiol 63:241–320

    Article  PubMed  CAS  Google Scholar 

  • Van den Heuvel DM, Pasterkamp RJ (2008) Getting connected in the dopamine system. Prog Neurobiol 85:75–93

    Article  PubMed  CAS  Google Scholar 

  • Van Rossum JM (1966) The significance of dopamine receptor blockade for the action of neuroleptic drugs. In: Brill J (ed) Neuro-psycho-pharmacology. Excerpta Medica Foundation, Amsterdam, pp 321–329

    Google Scholar 

  • Velakoulis D, Wood SJ, McGorry PD, Pantelis C (2000) Evidence for progression of brain structural abnormalities in schizophrenia: beyond the neurodevelopmental model. Aust N Z J Psychiatry 34(Suppl):S113–S126

    Article  PubMed  Google Scholar 

  • Voorn P, Kalsbeek A, Jorritsma-Byham B, Groenewegen HJ (1988) The pre- and postnatal development of the dopaminergic cell groups in the ventral mesencephalon and the dopaminergic innervation of the striatum of the rat. Neuroscience 25:857–887

    Article  PubMed  CAS  Google Scholar 

  • Weinberger DR (1987) Implications of normal brain development for the pathogenesis of schizophrenia. Arch Gen Psychiatry 44:660–669

    PubMed  CAS  Google Scholar 

  • Weinberger DR, Lipska BK (2005) Cortical maldevelopment, anti-psychotic drugs, and schizophrenia: a search for common ground. Schizophr Res 16:87–110

    Article  Google Scholar 

  • Weiner I (1990) Neural substrates of latent inhibition: the switching model. Psychol Bull 108:442–461

    Article  PubMed  CAS  Google Scholar 

  • Weiner I (2003) The “two-headed” latent inhibition model of schizophrenia: modeling positive and negative symptoms and their treatment. Psychopharmacology 169:257–297

    Article  PubMed  CAS  Google Scholar 

  • Weiner I, Gal G, Rawlins JN, Feldon J (1996) Differential involvement of the shell and core subterritories of the nucleus accumbens in latent inhibition and amphetamine-induced activity. Behav Brain Res 81:123–133

    Article  PubMed  CAS  Google Scholar 

  • Welberg LA, Seckl JR (2001) Prenatal stress, glucocorticoids and the programming of the brain. J Neuroendocrinol 13:113–128

    Article  PubMed  CAS  Google Scholar 

  • Whitley RJ, Stagno S (1997) Perinatal infections. In: Scheld WM, Whitley RJ, Durack DT (eds) Infections of the central nervous system. Lippincott-Raven, New York, pp 223–253

    Google Scholar 

  • Williams GV, Castner SA (2006) Under the curve: critical issues for elucidating D1 receptor function in working memory. Neuroscience 139:263–276

    Article  PubMed  CAS  Google Scholar 

  • Winter C, Djodari-Irani A, Sohr R, Morgenstern R, Feldon J, Juckel G, Meyer U (2008) Prenatal immune activation leads to multiple changes in basal neurotransmitter levels in the adult brain: implications for brain disorders of neurodevelopmental origin such as schizophrenia. Int J Neuropsychopharmacol, in press (Epub ahead of print [PMID: 18752727])

  • Winterer G, Weinberger DR (2004) Genes, dopamine and cortical signal-to-noise ratio in schizophrenia. Trends Neurosci 27:683–690

    Article  PubMed  CAS  Google Scholar 

  • Wolff AR, Bilkey DK (2008) Immune activation during mid-gestation disrupts sensorimotor gating in rat offspring. Behav Brain Res 190:156–159

    Article  PubMed  CAS  Google Scholar 

  • Wong DF, Wagner HN Jr, Tune LE, Dannals RF, Pearlson GD, Links JM, Tamminga CA, Broussolle EP, Ravert HT, Wilson AA, Toung JK, Malat J, Williams JA, O'Tuama LA, Snyder SH, Kuhar MJ, Gjedde A (1986) Positron emission tomography reveals elevated D2 dopamine receptors in drug-naive schizophrenics. Science 234:1558–1563

    Article  PubMed  CAS  Google Scholar 

  • Wood SJ, Pantelis C, Velakoulis D, Yücel M, Fornito A, McGorry PD (2008) Progressive changes in the development toward schizophrenia: studies in subjects at increased symptomatic risk. Schizophr Bull 34:322–329

    Article  PubMed  Google Scholar 

  • Yung AR, Phillips LJ, McGorry PD, McFarlane CA, Francey S, Harrigan S, Patton GC, Jackson HJ (1998) Prediction of psychosis. A step towards indicated prevention of schizophrenia. Br J Psychiatry 172:14–20

    CAS  Google Scholar 

  • Yung AR, Phillips LJ, Yuen HP, Francey SM, McFarlane CA, Hallgren M, McGorry PD (2003) Psychosis prediction: 12-month follow up of a high-risk (“prodromal”) group. Schizophr Res 60:21–32

    Article  PubMed  Google Scholar 

  • Zetterström RH, Solomin L, Jansson L, Hoffer BJ, Olson L, Perlmann T (1997) Dopamine neuron agenesis in Nurr1-deficient mice. Science 276:248–250

    Article  PubMed  Google Scholar 

  • Zuckerman L, Weiner I (2005) Maternal immune activation leads to behavioral and pharmacological changes in the adult offspring. J Psychiatr Res 39:311–323

    Article  PubMed  Google Scholar 

  • Zuckerman L, Rehavi M, Nachman R, Weiner I (2003) Immune activation during pregnancy in rats leads to a postpubertal emergence of disrupted latent inhibition, dopaminergic hyperfunction, and altered limbic morphology in the offspring: a novel neurodevelopmental model of schizophrenia. Neuropsychopharmacology 28:1778–1789

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgements

The studies performed at the authors’ institute were supported by the Swiss Federal Institute of Technology (ETH) Zurich and the Swiss National Science Foundation (SNSF).

Disclosure

The authors have no conflicts to disclose.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Urs Meyer or Joram Feldon.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Meyer, U., Feldon, J. Prenatal exposure to infection: a primary mechanism for abnormal dopaminergic development in schizophrenia. Psychopharmacology 206, 587–602 (2009). https://doi.org/10.1007/s00213-009-1504-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00213-009-1504-9

Keywords

Navigation