Skip to main content

Advertisement

Log in

Anatomically dissociable effects of dopamine D1 receptor agonists on reward and relief of withdrawal in morphine-dependent rats

  • Original Investigation
  • Published:
Psychopharmacology Aims and scope Submit manuscript

Abstract

Rationale

Chronic opiate administration induces neuroadaptations within the nucleus accumbens (NAc) and ventral tegmental area (VTA) that can contribute to dependence. We have shown that morphine dependence shifts the behavioral consequences of D1 dopamine (DA) receptor signaling: systemic administration of a D1 receptor agonist is rewarding and blocks naloxone-precipitated withdrawal signs in morphine-dependent rats, but has minimal effects in nondependent rats. These data suggest that D1 receptors acquire the ability to regulate reward and withdrawal in morphine-dependent rats. The brain regions involved in these effects are not known.

Objective

Studies were designed to test the hypothesis that the nucleus accumbens shell (NASh) and the ventral tegmental area (VTA) are important sites for mediating the behavioral effects of D1 receptor activation in morphine-dependent rats.

Materials and methods

The effects of microinjecting the D1 receptor agonist SKF 82958 into the NASh or the VTA on place conditioning and somatic withdrawal signs were studied in morphine-dependent and nondependent rats.

Results

Intra-NASh microinjection of SKF 82958 (1 μg/side) established conditioned place preferences in morphine-dependent but not nondependent rats, but had no effect on naloxone-induced place aversions or somatic withdrawal signs. Intra-VTA microinjection of SKF 82958 (2 μg) did not establish place preferences under any conditions, but blocked naloxone-induced place aversions without effects on somatic withdrawal signs.

Conclusions

There is an anatomical dissociation between D1 receptor-mediated reward and relief of withdrawal in morphine-dependent rats. When combined, the individual effects of D1 receptor activation in the NASh and VTA on the affective signs of precipitated morphine withdrawal resemble those seen with systemic administration.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  • Abrahams BS, Rutherford JD, Mallet PE, Beninger RJ (1998) Place conditioning with the dopamine D1-like receptor agonist SKF 82958 but not SKF 81297 or SKF 77434. Eur J Pharmacol 343:111–118

    Article  PubMed  CAS  Google Scholar 

  • Andersen PH, Jansen JA (1990) Dopamine receptor agonists: selectivity and dopamine D1 receptor efficacy. Eur J Pharmacol 188:335–347

    Article  PubMed  CAS  Google Scholar 

  • Bandler R, Shipley MT (1994) Columnar organization in the midbrain periaqueductal gray: modules for emotional expression? Trends Neurosci 17:379–389

    Article  PubMed  CAS  Google Scholar 

  • Bechara A, Nader K, van der Kooy D (1998) A two-separate-motivational-systems hypothesis of opioid addiction. Pharmacol Biochem Behav 59:1–17

    Article  PubMed  CAS  Google Scholar 

  • Bonci A, Williams JT (1996) A common mechanism mediates long-term changes in synaptic transmission after chronic cocaine and morphine. Neuron 16:631–639

    Article  PubMed  CAS  Google Scholar 

  • Bonci A, Williams JT (1997) Increased probability of GABA release during withdrawal from morphine. J Neurosci 17:796–803

    PubMed  CAS  Google Scholar 

  • Bozarth MA (1987) Neuroanatomical boundaries of the reward-relevant opiate-receptor field in the ventral tegmental area as mapped by the conditioned place preference method in rats. Brain Res 414:77–84

    Article  PubMed  CAS  Google Scholar 

  • Bozarth MA, Wise RA (1983) Neural substrates of opiate reinforcement. Prog Neuropsychopharmacol Biol Psychiatry 7:569–575

    Article  PubMed  CAS  Google Scholar 

  • Bozarth MA, Wise RA (1984) Anatomically distinct opiate receptor fields mediate reward and physical dependence. Science 224:516–517

    Article  PubMed  CAS  Google Scholar 

  • Cameron DL, Williams JT (1993) Dopamine D1 receptors facilitate transmitter release. Nature 366:344–347

    Article  PubMed  CAS  Google Scholar 

  • Carlezon WA Jr (2003) Place conditioning to study drug reward and aversion. Methods in Molecular Medicine 84:243–249

    PubMed  CAS  Google Scholar 

  • Carlezon WA Jr, Thomas MJ (2009) Biological substrates of reward and aversion: A nucleus accumbens activity hypothesis. Neuropharmacology 56(Suppl 1):122–132

    Article  PubMed  CAS  Google Scholar 

  • Carlezon WA Jr, Wise RA (1996) Microinjections of phencyclidine (PCP) and related drugs into nucleus accumbens shell potentiate medial forebrain bundle brain stimulation reward. Psychopharmacologia 128:413–420

    Article  CAS  Google Scholar 

  • Carlezon WA Jr, Devine DP, Wise RA (1995) Habit-forming actions of nomifensine in nucleus accumbens. Psychopharmacologia 122:194–197

    Article  CAS  Google Scholar 

  • Chartoff EH, Papadopoulou M, Konradi C, Carlezon WA Jr (2003) Dopamine-dependent increase in phosphorylation of cAMP response element binding protein (CREB) during precipitated morphine withdrawal in primary cultures of rat striatum. J Neurochem 87:107–118

    Article  PubMed  CAS  Google Scholar 

  • Chartoff EH, Mague SD, Barhight MF, Smith AM, Carlezon WA Jr (2006) Behavioral and molecular effects of dopamine D1 receptor stimulation during naloxone-precipitated morphine withdrawal. J Neurosci 26:6450–6457

    Article  PubMed  CAS  Google Scholar 

  • Chartoff EH, Potter D, Damez-Werno D, Cohen BM, Carlezon WA Jr (2008) Exposure to the selective kappa-opioid receptor agonist salvinorin A modulates the behavioral and molecular effects of cocaine in rats. Neuropsychopharmacology 33:2676–2687

    Article  PubMed  CAS  Google Scholar 

  • Di Chiara G, Imperato A (1988) Opposite effects of mu and kappa opiate agonists on dopamine release in the nucleus accumbens and in the dorsal caudate of freely moving rats. J Pharmacol Exp Ther 244:1067–1080

    PubMed  Google Scholar 

  • Diana M, Pistis M, Muntoni A, Gessa G (1995) Profound decrease of mesolimbic dopaminergic neuronal activity in morphine withdrawn rats. J Pharmacol Exp Ther 272:781–785

    PubMed  CAS  Google Scholar 

  • Frenois F, Cador M, Caille S, Stinus L, Le Moine C (2002) Neural correlates of the motivational and somatic components of naloxone-precipitated morphine withdrawal. Eur J Neurosci 16:1377–1389

    Article  PubMed  Google Scholar 

  • Georges F, Stinus L, Bloch B, Le Moine C (1999) Chronic morphine exposure and spontaneous withdrawal are associated with modifications of dopamine receptor and neuropeptide gene expression in the rat striatum. Eur J Neurosci 11:481–490

    Article  PubMed  CAS  Google Scholar 

  • Gold LH, Stinus L, Inturrisi CE, Koob GF (1994) Prolonged tolerance, dependence and abstinence following subcutaneous morphine pellet implantation in the rat. Eur J Pharmacol 253:45–51

    Article  PubMed  CAS  Google Scholar 

  • Gracy KN, Dankiewicz LA, Koob GF (2001) Opiate withdrawal-induced fos immunoreactivity in the rat extended amygdala parallels the development of conditioned place aversion. Neuropsychopharmacology 24:152–160

    Article  PubMed  CAS  Google Scholar 

  • Graham DL, Hoppenot R, Hendryx A, Self DW (2007) Differential ability of D1 and D2 dopamine receptor agonists to induce and modulate expression and reinstatement of cocaine place preference in rats. Psychopharmacology (Berl) 191:719–730

    Article  CAS  Google Scholar 

  • Harris GC, Aston-Jones G (1994) Involvement of D2 dopamine receptors in the nucleus accumbens in the opiate withdrawal syndrome. Nature 371:155–157

    Article  PubMed  CAS  Google Scholar 

  • Kalivas PW, Duffy P (1995) D1 receptors modulate glutamate transmission in the ventral tegmental area. J. Neurosci. 15:5379–5388

    PubMed  CAS  Google Scholar 

  • Koob GF, Stinus L, Le Moal M, Bloom FE (1989) Opponent process theory of motivation: neurobiological evidence from studies of opiate dependence. Neurosci Biobehav Rev 13:135–140

    Article  PubMed  CAS  Google Scholar 

  • Koob GF, Maldonado R, Stinus L (1992) Neural substrates of opiate withdrawal. Trends Neurosci. 15:186–191

    Article  PubMed  CAS  Google Scholar 

  • Kreek MJ, Koob GF (1998) Drug dependence: stress and dysregulation of brain reward pathways. Drug Alcohol Depend 51:23–47

    Article  PubMed  CAS  Google Scholar 

  • Laviolette SR, Gallegos RA, Henriksen SJ, van der Kooy D (2004) Opiate state controls bi-directional reward signaling via GABAA receptors in the ventral tegmental area. Nat Neurosci 7:160–169

    Article  PubMed  CAS  Google Scholar 

  • Mansour A, Meador-Woodruff JH, Zhou Q, Civelli O, Akil H, Watson SJ (1992) A comparison of D1 receptor binding and mRNA in rat brain using receptor autoradiographic and in situ hybridization techniques. Neuroscience 46:959–971

    Article  PubMed  CAS  Google Scholar 

  • McBride WJ, Murphy JM, Ikemoto S (1999) Localization of brain reinforcement mechanisms: intracranial self-administration and intracranial place-conditioning studies. Behav Brain Res 101:129–152

    Article  PubMed  CAS  Google Scholar 

  • Meloni EG, Gerety LP, Knoll AT, Cohen BM, Carlezon WA Jr (2006) Behavioral and anatomical interactions between dopamine and corticotropin-releasing factor in the rat. J Neurosci 26:3855–3863

    Article  PubMed  CAS  Google Scholar 

  • Missale C, Nash SR, Robinson SW, Jaber M, Caron MG (1998) Dopamine receptors: from structure to function. Physiol Rev 78:189–225

    PubMed  CAS  Google Scholar 

  • Nestler EJ (1992) Molecular mechanisms of drug addiction. J Neurosci 12:2439–2450

    PubMed  CAS  Google Scholar 

  • Nestler EJ, Aghajanian GK (1997) Molecular and cellular basis of addiction. Science 278:58–63

    Article  PubMed  CAS  Google Scholar 

  • Nicola SM, Surmeier J, Malenka RC (2000) Dopaminergic modulation of neuronal excitability in the striatum and nucleus accumbens. Annu Rev Neurosci 23:185–215

    Article  PubMed  CAS  Google Scholar 

  • Olds ME (1982) Reinforcing effects of morphine in the nucleus accumbens. Brain Res 237:429–440

    Article  PubMed  CAS  Google Scholar 

  • Olson VG, Zabetian CP, Bolanos CA, Edwards S, Barrot M, Eisch AJ, Hughes T, Self DW, Neve RL, Nestler EJ (2005) Regulation of drug reward by cAMP response element-binding protein: evidence for two functionally distinct subregions of the ventral tegmental area. J Neurosci 25:5553–5562

    Article  PubMed  CAS  Google Scholar 

  • Paxinos G, Watson C (1986) The rat brain in stereotaxic coordinates. Academic, San Diego, pp 407–431

    Google Scholar 

  • Peoples LL, West MO (1996) Phasic firing of single neurons in the rat nucleus accumbens correlated with the timing of intravenous cocaine self-administration. J Neurosci 16:3459–3473

    PubMed  CAS  Google Scholar 

  • Punch LJ, Self DW, Nestler EJ, Taylor JR (1997) Opposite modulation of opiate withdrawal behaviors on microinfusion of a protein kinase A inhibitor versus activator into the locus coeruleus or periaqueductal gray. J Neurosci 17:8520–8527

    PubMed  CAS  Google Scholar 

  • Roitman MF, Wheeler RA, Carelli RM (2005) Nucleus Accumbens neurons are innately tuned for rewarding and aversive taste stimuli, encode their predictors, and are linked to motor output. Neuron 45:587–597

    Article  PubMed  CAS  Google Scholar 

  • Rossetti ZL, Hmaidan Y, Gessa GL (1992) Marked inhibition of mesolimbic dopamine release: a common feature of ethanol, morphine, cocaine and amphetamine abstinence in rats. Eur J Pharmacol 221:227–234

    Article  PubMed  CAS  Google Scholar 

  • Ruskin DN, Rawji SS, Walters JR (1998) Effects of full D1 dopamine receptor agonists on firing rates in the globus pallidus and substantia nigra pars compacta in vivo: tests for D1 receptor selectivity and comparisons to the partial agonist SKF 38393. J Pharmacol Exp Ther 286:272–281

    PubMed  CAS  Google Scholar 

  • Self DW, Stein L (1992) The D1 agonists SKF 82958 and SKF 77434 are self-administered by rats. Brain Res 582:349–352

    Article  PubMed  CAS  Google Scholar 

  • Self DW, Barnhart WJ, Lehman DA, Nestler EJ (1996) Opposite modulation of cocaine-seeking behavior by D1- and D2-like dopamine receptor agonists. Science 271:1586–1589

    Article  PubMed  CAS  Google Scholar 

  • Sharma SK, Klee WA, Nirenberg M (1977) Opiate-dependent modulation of adenylate cyclase. Proc Natl Acad Sci USA 74:3365–3369

    Article  PubMed  CAS  Google Scholar 

  • Stinus L, Le Moal M, Koob GF (1990) Nucleus accumbens and amygdala are possible substrates for the aversive stimulus effects of opiate withdrawal. Neuroscience 37:767–773

    Article  PubMed  CAS  Google Scholar 

  • Surmeier DJ, Bargas J, Hemmings HC Jr, Nairn AC, Greengard P (1995) Modulation of calcium currents by a D1 dopaminergic protein kinase/phosphatase cascade in rat neostriatal neurons. Neuron 14:385–397

    Article  PubMed  CAS  Google Scholar 

  • Swanson LW (1982) The projections of the ventral tegmental area and adjacent regions: A combined fluorescent retrograde tracer and immunofluorescence study in the rat. Brain Res Bull 9:321–353

    Article  PubMed  CAS  Google Scholar 

  • Swanson CJ, Heath S, Stratford TR, Kelley AE (1997) Differential behavioral responses to dopaminergic stimulation of nucleus accumbens subregions in the rat. Pharmacol Biochem Behav 58:933–945

    Article  PubMed  CAS  Google Scholar 

  • Todtenkopf MS, Stellar JR (2000) Assessment of tyrosine hydroxylase immunoreactive innervation in five subregions of the nucleus accumbens shell in rats treated with repeated cocaine. Synapse 38:261–270

    Article  PubMed  CAS  Google Scholar 

  • Valverde O, Tzavara E, Hanoune J, Roques B, Maldonado R (1996) Protein kinases in the rat nucleus accumbens are involved in the aversive component of opiate withdrawal. Eur J Neurosci 8:2671–2678

    Article  PubMed  CAS  Google Scholar 

  • White NM, Packard MG, Hiroi N (1991) Place conditioning with dopamine D1 and D2 agonists injected peripherally or into nucleus accumbens. Psychopharmacologia 103:271–276

    Article  CAS  Google Scholar 

  • Williams JT, Christie MJ, Manzoni O (2001) Cellular and synaptic adaptations mediating opioid dependence. Physiol Rev 81:299–343

    PubMed  CAS  Google Scholar 

  • Wise RA (1989) Opiate reward: sites and substrates. Neurosci Biobehav Rev 13:129–133

    Article  PubMed  CAS  Google Scholar 

  • Wise RA (1996) Neurobiology of addiction. Curr Opin Neurobiol 6:243–251

    Article  PubMed  CAS  Google Scholar 

  • Wise RA, Hoffman DC (1992) Localization of drug reward mechanisms by intracranial injections. Synapse 10(3):247–263

    Article  PubMed  CAS  Google Scholar 

  • Wise RA, Rompre PP (1989) Brain dopamine and reward. Annu Rev Psychol 40:191–225

    Article  PubMed  CAS  Google Scholar 

  • Woolverton WL, Goldberg LI, Ginos JZ (1984) Intravenous self-administration of dopamine receptor agonists by rhesus monkeys. J Pharmacol Exp Ther 230:678–683

    PubMed  CAS  Google Scholar 

  • Zhang XF, Hu XT, White FJ (1998) Whole-cell plasticity in cocaine withdrawal: reduced sodium currents in nucleus accumbens neurons. J Neurosci 18:488–498

    PubMed  Google Scholar 

Download references

Acknowledgements

This work was supported by National Institutes of Health grants DA012736 (to WC) and DA017524 (to EC) and conducted in a facility constructed with support from Research Facilities Improvement Program (RR11213) from the National Center for Research Resources.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Elena H. Chartoff.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Chartoff, E.H., Barhight, M.F., Mague, S.D. et al. Anatomically dissociable effects of dopamine D1 receptor agonists on reward and relief of withdrawal in morphine-dependent rats. Psychopharmacology 204, 227–239 (2009). https://doi.org/10.1007/s00213-008-1454-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00213-008-1454-7

Keywords

Navigation