Skip to main content
Log in

Increased particulate phosphodiesterase 4 in the prefrontal cortex supports 5-HT4 receptor-induced improvement of object recognition memory in the rat

  • Original Investigation
  • Published:
Psychopharmacology Aims and scope Submit manuscript

Abstract

Rationale

Serotonin receptors (5-HT4Rs) are critical to both short-term and long-term memory processes. These receptors mainly trigger the cyclic adenosine monophosphate (cAMP)/protein kinase A signaling pathway, which is regulated by cAMP phosphodiesterases (PDEs).

Objectives

We investigated the mechanisms underlying the effect of the selective activation of 5-HT4R on information acquisition in an object recognition memory task and the putative regulation of PDE.

Materials and methods

The effect of RS 67333 (1 mg/kg, intraperitoneally [i.p.], injected 30 min before the sample phase) was examined at different delay intervals in an object recognition task in Sprague–Dawley rats. After the testing trial, PDE activity of brain regions implicated in this task was assayed.

Results

RS 67333-treated rats spent more time exploring the novel object after a 15-min (P < 0.001) or 4-h delay (P < 0.01) but not after a 24-h delay, whereas control animals showed no preference for the novel object for delays greater than 15 min. We characterized the specific patterns and kinetic properties of PDE in the prefrontal and perirhinal cortices as well as in the hippocampus. We demonstrated that particulate PDE activities increase in both the prefrontal cortex and hippocampus following 5-HT4R stimulation. In the prefrontal cortex, PDE4 activities support the RS 67333-induced modification of PDE activities, whereas in the hippocampus, all cAMP-PDE activities varied. In contrast, particulate PDE variation in the hippocampus was not found to support improvement of recognition memory after a 4-h delay.

Conclusions

We provide evidence that the increase in particulate PDE4 activity in the prefrontal cortex supports the 5-HT4R-induced increase in information acquisition.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  • Bach ME, Barad M, Son H, Zhuo M, Lu YF, Shih R, Mansuy I, Hawkins RD, Kandel ER (1999) Age-related defects in spatial memory are correlated with defects in the late phase of hippocampal long-term potentiation in vitro and are attenuated by drugs that enhance the cAMP signaling pathway. Proc Natl Acad Sci USA 96:5280–5285

    Article  PubMed  CAS  Google Scholar 

  • Bailey CH, Bartsch D, Kandel ER (1996) Toward a molecular definition of long-term memory storage. Proc Natl Acad Sci USA 93:13445–13452

    Article  PubMed  CAS  Google Scholar 

  • Barad M, Bourtchouladze R, Winder DG, Golan H, Kandel E (1998) Rolipram, a type IV-specific phosphodiesterase inhibitor, facilitates the establishment of long-lasting long-term potentiation and improves memory. Proc Natl Acad Sci USA 95:15020–15025

    Article  PubMed  CAS  Google Scholar 

  • Bernabeu R, Cammarota M, Izquierdo I, Medina JH (1997) Involvement of hippocampal AMPA glutamate receptor changes and the cAMP/protein kinase A/CREB-P signalling pathway in memory consolidation of an avoidance task in rats. Braz J Med Biol Res 30:961–965

    Article  PubMed  CAS  Google Scholar 

  • Bevilaqua L, Ardenghi P, Schroder N, Bromberg E, Schmitz PK, Schaeffer E, Quevedo J, Bianchin M, Walz R, Medina JH, Izquierdo I (1997) Drugs acting upon the cyclic adenosine monophosphate/protein kinase A signalling pathway modulate memory consolidation when given late after training into rat hippocampus but not amygdala. Behav Pharmacol 8:331–338

    Article  PubMed  CAS  Google Scholar 

  • Boess FG, Hendrix M, van der Staay FJ, Erb C, Schreiber R, van Staveren W, de Vente J, Prickaerts J, Blokland A, Koenig G (2004) Inhibition of phosphodiesterase 2 increases neuronal cGMP, synaptic plasticity and memory performance. Neuropharmacology 47:1081–1092

    Article  PubMed  CAS  Google Scholar 

  • Bolger GB, Rodgers L, Riggs M (1994) Differential CNS expression of alternative mRNA isoforms of the mammalian genes encoding cAMP-specific phosphodiesterases. Gene 149:237–244

    Article  PubMed  CAS  Google Scholar 

  • Bolger GB, Erdogan S, Jones RE, Loughney K, Scotland G, Hoffmann R, Wilkinson I, Farrell C, Houslay MD (1997) Characterization of five different proteins produced by alternatively spliced mRNAs from the human cAMP-specific phosphodiesterase PDE4D gene. Biochem J 328:539–548

    PubMed  CAS  Google Scholar 

  • Bonaventure P, Hall H, Gommeren W, Cras P, Langlois X, Jurzak M, Leysen JE (2000) Mapping of serotonin 5-HT(4) receptor mRNA and ligand binding sites in the post-mortem human brain. Synapse 36:35–46

    Article  PubMed  CAS  Google Scholar 

  • Bourtchouladze R, Lidge R, Catapano R, Stanley J, Gossweiler S, Romashko D, Scott R, Tully T (2003) A mouse model of Rubinstein–Taybi syndrome: defective long-term memory is ameliorated by inhibitors of phosphodiesterase 4. Proc Natl Acad Sci USA 100:10518–10522

    Article  PubMed  CAS  Google Scholar 

  • Bussey TJ, Duck J, Muir JL, Aggleton JP (2000) Distinct patterns of behavioural impairments resulting from fornix transection or neurotoxic lesions of the perirhinal and postrhinal cortices in the rat. Behav Brain Res 111:187–202

    Article  PubMed  CAS  Google Scholar 

  • Chen CN, Denome S, Davis RL (1986) Molecular analysis of cDNA clones and the corresponding genomic coding sequences of the Drosophila dunce+ gene, the structural gene for cAMP phosphodiesterase. Proc Natl Acad Sci USA 83:9313–9317

    Article  PubMed  CAS  Google Scholar 

  • Conti M, Beavo J (2007) Biochemistry and physiology of cyclic nucleotide phosphodiesterases: essential components in cyclic nucleotide signaling. Annu Rev Biochem 76:481–511

    Article  PubMed  CAS  Google Scholar 

  • Conti M, Richter W, Mehats C, Livera G, Park JY, Jin C (2003) Cyclic AMP-specific PDE4 phosphodiesterases as critical components of cyclic AMP signaling. J Biol Chem 278:5493–5496

    Article  PubMed  CAS  Google Scholar 

  • de Vente J, Hopkins DA, Markerink-van Ittersum M, Steinbusch HW (1996) Effects of the 3′,5′-phosphodiesterase inhibitors isobutylmethylxanthine and zaprinast on NO-mediated cGMP accumulation in the hippocampus slice preparation: an immunocytochemical study. J Chem Neuroanat 10:241–248

    Article  PubMed  Google Scholar 

  • DeNoble VJ, Repetti SJ, Gelpke LW, Wood LM, Keim KL (1986) Vinpocetine: nootropic effects on scopolamine-induced and hypoxia-induced retrieval deficits of a step-through passive avoidance response in rats. Pharmacol Biochem Behav 24:1123–1128

    Article  PubMed  CAS  Google Scholar 

  • Dere E, Huston JP, De Souza Silva MA (2007) The pharmacology, neuroanatomy and neurogenetics of one-trial object recognition in rodents. Neurosci Biobehav Rev 31:673–704

    Article  PubMed  CAS  Google Scholar 

  • Eglen RM, Bonhaus DW, Johnson LG, Leung E, Clark RD (1995) Pharmacological characterization of two novel and potent 5-HT4 receptor agonists, RS 67333 and RS 67506, in vitro and in vivo. Br J Pharmacol 115:1387–1392

    PubMed  CAS  Google Scholar 

  • Ehrman LA, Williams MT, Schaefer TL, Gudelsky GA, Reed TM, Fienberg AA, Greengard P, Vorhees CV (2006) Phosphodiesterase 1B differentially modulates the effects of methamphetamine on locomotor activity and spatial learning through DARPP32-dependent pathways: evidence from PDE1B-DARPP32 double-knockout mice. Genes Brain Behav 5:540–551

    Article  PubMed  CAS  Google Scholar 

  • Engels P, Abdel’Al S, Hulley P, Lubbert H (1995) Brain distribution of four rat homologues of the Drosophila dunce cAMP phosphodiesterase. J Neurosci Res 41:169–178

    Article  PubMed  CAS  Google Scholar 

  • Ennaceur A, Delacour J (1988) A new one-trial test for neurobiological studies of memory in rats1: behavioral data. Behav Brain Res 31:47–59

    Article  PubMed  CAS  Google Scholar 

  • Ennaceur A, Neave N, Aggleton JP (1997) Spontaneous object recognition and object location memory in rats: the effects of lesions in the cingulate cortices, the medial prefrontal cortex, the cingulum bundle and the fornix. Exp Brain Res 113:509–519

    Article  PubMed  CAS  Google Scholar 

  • Fontana DJ, Daniels SE, Wong EH, Clark RD, Eglen RM (1997) The effects of novel, selective 5-hydroxytryptamine (5-HT)4 receptor ligands in rat spatial navigation. Neuropharmacology 36:689–696

    Article  PubMed  CAS  Google Scholar 

  • Galeotti N, Ghelardini C, Bartolini A (1998) Role of 5-HT4 receptors in the mouse passive avoidance test. J Pharmacol Exp Ther 286:1115–1121

    PubMed  CAS  Google Scholar 

  • Hannesson DK, Vacca G, Howland JG, Phillips AG (2004) Medial prefrontal cortex is involved in spatial temporal order memory but not spatial recognition memory in tests relying on spontaneous exploration in rats. Behav Brain Res 153:273–285

    Article  PubMed  CAS  Google Scholar 

  • Hotte M, Naudon L, Jay TM (2005) Modulation of recognition and temporal order memory retrieval by dopamine D1 receptor in rats. Neurobiol Learn Mem 84:85–92

    Article  PubMed  CAS  Google Scholar 

  • Hotte M, Thuault S, Lachaise F, Dineley KT, Hemmings HC, Nairn AC, Jay TM (2006) D1 receptor modulation of memory retrieval performance is associated with changes in pCREB and pDARPP-32 in rat prefrontal cortex. Behav Brain Res 171:127–133

    Article  PubMed  CAS  Google Scholar 

  • Hoyer D, Hannon JP, Martin GR (2002) Molecular, pharmacological and functional diversity of 5-HT receptors. Pharmacol Biochem Behav 71:533–554

    Article  PubMed  CAS  Google Scholar 

  • Iona S, Cuomo M, Bushnik T, Naro F, Sette C, Hess M, Shelton ER, Conti M (1998) Characterization of the rolipram-sensitive, cyclic AMP-specific phosphodiesterases: identification and differential expression of immunologically distinct forms in the rat brain. Mol Pharmacol 53:23–32

    PubMed  CAS  Google Scholar 

  • Iwahashi Y, Furuyama T, Tano Y, Ishimoto I, Shimomura Y, Inagaki S (1996) Differential distribution of mRNA encoding cAMP-specific phosphodiesterase isoforms in the rat brain. Brain Res Mol Brain Res 38:14–24

    Article  PubMed  CAS  Google Scholar 

  • Izquierdo I, Medina JH (1997) Memory formation: the sequence of biochemical events in the hippocampus and its connection to activity in other brain structures. Neurobiol Learn Mem 68:285–316

    Article  PubMed  CAS  Google Scholar 

  • Kelly MP, Cheung YF, Favilla C, Siegel SJ, Kanes SJ, Houslay MD, Abel T (2008) Constitutive activation of the G-protein subunit Galphas within forebrain neurons causes PKA-dependent alterations in fear conditioning and cortical Arc mRNA expression. Learn Mem 15:75–83

    Article  PubMed  CAS  Google Scholar 

  • Lamirault L, Simon H (2001) Enhancement of place and object recognition memory in young adult and old rats by RS 67333, a partial agonist of 5-HT4 receptors. Neuropharmacology 41:844–853

    Article  PubMed  CAS  Google Scholar 

  • Lamirault L, Guillou C, Thal C, Simon H (2003) Combined treatment with galanthaminium bromide, a new cholinesterase inhibitor, and RS 67333, a partial agonist of 5-HT4 receptors, enhances place and object recognition in young adult and old rats. Prog Neuropsychopharmacol Biol Psychiatry 27:185–195

    Article  PubMed  CAS  Google Scholar 

  • Lelong V, Dauphin F, Boulouard M (2001) RS 67333 and D-cycloserine accelerate learning acquisition in the rat. Neuropharmacology 41:517–522

    Article  PubMed  CAS  Google Scholar 

  • Lerner A, Epstein PM (2006) Cyclic nucleotide phosphodiesterases as targets for treatment of haematological malignancies. Biochem J 393:21–41

    Article  PubMed  CAS  Google Scholar 

  • Letty S, Child R, Dumuis A, Pantaloni A, Bockaert J, Rondouin G (1997) 5-HT4 receptors improve social olfactory memory in the rat. Neuropharmacology 36:681–687

    Article  PubMed  CAS  Google Scholar 

  • Levallet G, Levallet J, Bonnamy PJ (2007a) Alterations in proteoglycan synthesis selectively impair FSH-induced particulate cAMP-phosphodiesterase 4 (PDE4) activation in immature rat Sertoli cells. Biochim Biophys Acta 1770:638–648

    PubMed  CAS  Google Scholar 

  • Levallet G, Levallet J, Bouraima-Lelong H, Bonnamy PJ (2007b) Expression of the cAMP-phosphodiesterase PDE4D isoforms and age-related changes in follicle-stimulating hormone-stimulated PDE4 activities in immature rat Sertoli cells. Biol Reprod 76:794–803

    Article  PubMed  CAS  Google Scholar 

  • Lobban M, Shakur Y, Beattie J, Houslay MD (1994) Identification of two splice variant forms of type-IVB cyclic AMP phosphodiesterase, DPD (rPDE-IVB1) and PDE-4 (rPDE-IVB2) in brain: selective localization in membrane and cytosolic compartments and differential expression in various brain regions. Biochem J 304:399–406

    PubMed  CAS  Google Scholar 

  • Lugnier C (2006) Cyclic nucleotide phosphodiesterase (PDE) superfamily: a new target for the development of specific therapeutic agents. Pharmacol Ther 109:366–398

    Article  PubMed  CAS  Google Scholar 

  • Marchetti E, Dumuis A, Bockaert J, Soumireu-Mourat B, Roman FS (2000) Differential modulation of the 5-HT(4) receptor agonists and antagonist on rat learning and memory. Neuropharmacology 39:2017–2027

    Article  PubMed  CAS  Google Scholar 

  • Marchetti-Gauthier E, Roman FS, Dumuis A, Bockaert J, Soumireu-Mourat B (1997) BIMU1 increases associative memory in rats by activating 5-HT4 receptors. Neuropharmacology 36:697–706

    Article  PubMed  CAS  Google Scholar 

  • Meneses A (2007) Stimulation of 5-HT1A, 5-HT1B, 5-HT2A/2C, 5-HT3 and 5-HT4 receptors or 5-HT uptake inhibition: short- and long-term memory. Behav Brain Res 184:81–90

    Article  PubMed  CAS  Google Scholar 

  • Meneses A, Hong E (1997) Effects of 5-HT4 receptor agonists and antagonists in learning. Pharmacol Biochem Behav 56:347–351

    Article  PubMed  CAS  Google Scholar 

  • Michie AM, Lobban M, Muller T, Harnett MM, Houslay MD (1996) Rapid regulation of PDE-2 and PDE-4 cyclic AMP phosphodiesterase activity following ligation of the T cell antigen receptor on thymocytes: analysis using the selective inhibitors erythro-9-(2-hydroxy-3-nonyl)-adenine (EHNA) and rolipram. Cell Signal 8:97–110

    Article  PubMed  CAS  Google Scholar 

  • Miro X, Perez-Torres S, Palacios JM, Puigdomenech P, Mengod G (2001) Differential distribution of cAMP-specific phosphodiesterase 7A mRNA in rat brain and peripheral organs. Synapse 40:201–214

    Article  PubMed  CAS  Google Scholar 

  • Miro X, Perez-Torres S, Puigdomenech P, Palacios JM, Mengod G (2002) Differential distribution of PDE4D splice variant mRNAs in rat brain suggests association with specific pathways and presynaptical localization. Synapse 45:259–269

    Article  PubMed  CAS  Google Scholar 

  • Mongillo M, Tocchetti CG, Terrin A, Lissandron V, Cheung YF, Dostmann WR, Pozzan T, Kass DA, Paolocci N, Houslay MD, Zaccolo M (2006) Compartmentalized phosphodiesterase-2 activity blunts beta-adrenergic cardiac inotropy via an NO/cGMP-dependent pathway. Circ Res 98:226–234

    Article  PubMed  CAS  Google Scholar 

  • Moser PC, Bergis OE, Jegham S, Lochead A, Duconseille E, Terranova JP, Caille D, Berque-Bestel I, Lezoualc’h F, Fischmeister R, Dumuis A, Bockaert J, George P, Soubrie P, Scatton B (2002) SL65.0155, a novel 5-hydroxytryptamine(4) receptor partial agonist with potent cognition-enhancing properties. J Pharmacol Exp Ther 302:731–741

    Article  PubMed  CAS  Google Scholar 

  • O’Donnell JM, Frith S (1999) Behavioral effects of family-selective inhibitors of cyclic nucleotide phosphodiesterases. Pharmacol Biochem Behav 63:185–192

    Article  PubMed  Google Scholar 

  • Omori K, Kotera J (2007) Overview of PDEs and their regulation. Circ Res 100:309–327

    Article  PubMed  CAS  Google Scholar 

  • Orsetti M, Dellarole A, Ferri S, Ghi P (2003) Acquisition, retention, and recall of memory after injection of RS67333, a 5-HT(4) receptor agonist, into the nucleus basalis magnocellularis of the rat. Learn Mem 10:420–426

    Article  PubMed  Google Scholar 

  • Park JY, Richard F, Chun SY, Park JH, Law E, Horner K, Jin SL, Conti M (2003) Phosphodiesterase regulation is critical for the differentiation and pattern of gene expression in granulosa cells of the ovarian follicle. Mol Endocrinol 17:1117–1130

    Article  PubMed  CAS  Google Scholar 

  • Parker A, Gaffan D (1998) Interaction of frontal and perirhinal cortices in visual object recognition memory in monkeys. Eur J Neurosci 10:3044–3057

    Article  PubMed  CAS  Google Scholar 

  • Pittman RN, Minneman KP, Molinoff PB (1980) Ontogeny of beta 1- and beta 2-adrenergic receptors in rat cerebellum and cerebral cortex. Brain Res 188:357–368

    Article  PubMed  CAS  Google Scholar 

  • Podzuweit T, Nennstiel P, Muller A (1995) Isozyme selective inhibition of cGMP-stimulated cyclic nucleotide phosphodiesterases by erythro-9-(2-hydroxy-3-nonyl) adenine. Cell Signal 7:733–738

    Article  PubMed  CAS  Google Scholar 

  • Qiu Y, Davis RL (1993) Genetic dissection of the learning/memory gene dunce of Drosophila melanogaster. Genes Dev 7:1447–1458

    Article  PubMed  CAS  Google Scholar 

  • Reed TM, Repaske DR, Snyder GL, Greengard P, Vorhees CV (2002) Phosphodiesterase 1B knock-out mice exhibit exaggerated locomotor hyperactivity and DARPP-32 phosphorylation in response to dopamine agonists and display impaired spatial learning. J Neurosci 22:5188–5197

    PubMed  CAS  Google Scholar 

  • Richter W, Jin SL, Conti M (2005) Splice variants of the cyclic nucleotide phosphodiesterase PDE4D are differentially expressed and regulated in rat tissue. Biochem J 388:803–811

    Article  PubMed  CAS  Google Scholar 

  • Rutten K, Prickaerts J, Hendrix M, van der Staay FJ, Sik A, Blokland A (2007) Time-dependent involvement of cAMP and cGMP in consolidation of object memory: studies using selective phosphodiesterase type 2, 4 and 5 inhibitors. Eur J Pharmacol 558:107–112

    Article  PubMed  CAS  Google Scholar 

  • Sairenji N, Satoh K, Sugiya H (2006) Ca(2+)/calmodulin-dependent cyclic nucleotide phosphodiesterase in cGMP metabolism in rabbit parotid acinar cells. Biomed Res 27:37–44

    Article  PubMed  CAS  Google Scholar 

  • Sakagami H, Sawamura Y, Kondo H (1995) Synchronous patchy pattern of gene expression for adenylyl cyclase and phosphodiesterase but discrete expression for G-protein in developing rat striatum. Brain Res Mol Brain Res 33:185–191

    Article  PubMed  CAS  Google Scholar 

  • Shakur Y, Fong M, Hensley J, Cone J, Movsesian MA, Kambayashi J, Yoshitake M, Liu Y (2002) Comparison of the effects of cilostazol and milrinone on cAMP-PDE activity, intracellular cAMP and calcium in the heart. Cardiovasc Drugs Ther 16:417–427

    Article  PubMed  CAS  Google Scholar 

  • Sudo T, Tachibana K, Toga K, Tochizawa S, Inoue Y, Kimura Y, Hidaka H (2000) Potent effects of novel anti-platelet aggregatory cilostamide analogues on recombinant cyclic nucleotide phosphodiesterase isozyme activity. Biochem Pharmacol 59:347–356

    Article  PubMed  CAS  Google Scholar 

  • Terry AV Jr, Buccafusco JJ, Jackson WJ, Prendergast MA, Fontana DJ, Wong EH, Bonhaus DW, Weller P, Eglen RM (1998) Enhanced delayed matching performance in younger and older macaques administered the 5-HT4 receptor agonist, RS 17017. Psychopharmacology (Berl) 135:407–415

    Article  CAS  Google Scholar 

  • Thompson WJ, Appleman MM (1971) Multiple cyclic nucleotide phosphodiesterase activities from rat brain. Biochemistry 10:311–316

    Article  PubMed  CAS  Google Scholar 

  • van Staveren WC, Markerink-van Ittersum M, Steinbusch HW, de Vente J (2001) The effects of phosphodiesterase inhibition on cyclic GMP and cyclic AMP accumulation in the hippocampus of the rat. Brain Res 888:275–286

    Article  PubMed  Google Scholar 

  • Vilaro MT, Cortes R, Gerald C, Branchek TA, Palacios JM, Mengod G (1996) Localization of 5-HT4 receptor mRNA in rat brain by in situ hybridization histochemistry. Brain Res Mol Brain Res 43:356–360

    Article  PubMed  CAS  Google Scholar 

  • Warburton EC, Baird AL, Morgan A, Muir JL, Aggleton JP (2000) Disconnecting hippocampal projections to the anterior thalamus produces deficits on tests of spatial memory in rats. Eur J Neurosci 12:1714–1726

    Article  PubMed  CAS  Google Scholar 

  • Ye Y, O’Donnell JM (1996) Diminished noradrenergic stimulation reduces the activity of rolipram-sensitive, high-affinity cyclic AMP phosphodiesterase in rat cerebral cortex. J Neurochem 66:1894–1902

    Article  PubMed  CAS  Google Scholar 

  • Zhang K, Farooqui SM, O’Donnell JM (1999) Ontogeny of rolipram-sensitive, low-K(m), cyclic AMP-specific phosphodiesterase in rat brain. Brain Res Dev Brain Res 112:11–19

    Article  PubMed  CAS  Google Scholar 

  • Zhang HT, Huang Y, Suvarna NU, Deng C, Crissman AM, Hopper AT, De Vivo M, Rose GM, O’Donnell JM (2005) Effects of the novel PDE4 inhibitors MEM1018 and MEM1091 on memory in the radial-arm maze and inhibitory avoidance tests in rats. Psychopharmacology (Berl) 179:613–619

    Article  CAS  Google Scholar 

Download references

Acknowledgments

The authors thank Dr. S. Carreau (Laboratoire Œstrogènes et Reproduction, EA 2608, INRA USC 2006, University of Caen) and Dr. P. Barbey (LAMARE) for giving us access to the ultracentrifuge and the radioactivity laboratory, respectively. The authors also want to thank Dr. Daryl S Henderson (Squirrel Scribe) for final language revision. This work was supported by grants from the University of Caen.

Disclosure statement

The authors have nothing to disclose.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Guénaëlle Levallet.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Levallet, G., Hotte, M., Boulouard, M. et al. Increased particulate phosphodiesterase 4 in the prefrontal cortex supports 5-HT4 receptor-induced improvement of object recognition memory in the rat. Psychopharmacology 202, 125–139 (2009). https://doi.org/10.1007/s00213-008-1283-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00213-008-1283-8

Keywords

Navigation