Skip to main content
Log in

Pharmacological manipulations of interval timing using the peak procedure in male C3H mice

  • Original Investigation
  • Published:
Psychopharmacology Aims and scope Submit manuscript

Abstract

Rationale

Timing deficits are characteristic of developmental and neurodegenerative disorders that are accompanied by cognitive impairment. A prominent theory of this interval timing posits an internal clock whose pace is modulated by the neurotransmitter dopamine.

Objectives

We tested two hypotheses about the pharmacology of interval timing in mice: (1) that general cognitive enhancers should increase, and cognitive disruptors should decrease temporal precision and (2) that acutely elevated dopamine should speed this internal clock and produce overestimation of elapsing time.

Materials and methods

C3H mice were tested in the peak procedure, a timing task, following acute administration of two putative cognitive enhancers (atomoxetine and physostigmine), two cognitive disruptors (scopolamine and chlordiazepoxide [CDP]), or two dopamine agonists (d-amphetamine and methamphetamine).

Results

The first hypothesis received strong support: temporal precision worsened with both cognitive disruptors, but improved with both cognitive enhancers. The two dopamine agonists also produced underestimation of elapsing time—congruent with the slowing of an internal clock and inconsistent with a dopamine-driven clock.

Conclusion

Our results suggest that interval timing has potential as an assay for generalized cognitive performance and that the dopamine-clock hypothesis needs further refinement.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  • Abner RT, Edwards T, Douglas A, Brunner D (2001) Pharmacology of temporal cognition in two mouse strains. Int J Comp Psychol 14:189–210

    Google Scholar 

  • Andersen JM, Lindberg V, Myhrer T (2002) Effects of scopolamine and d-cycloserine on non-spatial reference memory in rats.. Behav Brain Res 129:211–216

    Article  PubMed  CAS  Google Scholar 

  • Artieda J, Pastor MA, Lacruz F, Obeso JA (1992) Temporal discrimination is abnormal in Parkinson’s disease. Brain 115:199–210

    Article  PubMed  Google Scholar 

  • Balci F, Meck W, Moore H, Brunner D (2008a) Timing deficits in aging and neuropathology. In: Bizon JL, Woods AG (eds) Animal models of human cognitive aging. Humana Press, Totowa (in press)

  • Balci F, Papachristos EB, Gallistel CR, Brunner D, Gibson J, Shumyatsky GP (2008b) Interval-timing in the genetically modified mouse: a simple paradigm. Genes Brain Behav 7:373–384

    Article  PubMed  CAS  Google Scholar 

  • Barkley RA, Koplowicz S, Anderson T, McMurray MB (1997) Sense of time in children with ADHD: effects of duration, distraction, and stimulant medication. J Int Neuropsychol Soc 3:359–369

    PubMed  CAS  Google Scholar 

  • Beninger RJ, Wirsching BA, Mallet PE, Jhamandas K, Boegman RJ (1995) Physostigmine but not 3,4-diaminopyridine improve mnemonic function in memory-impaired rats. Pharmacol Biochem Behav 51:739–774

    Article  PubMed  CAS  Google Scholar 

  • Bensadoun JC, Brooks SP, Dunnett SB (2004) Free operant and discrete trial performance of mice in the 9 hole-box apparatus: validation using amphetamine and scopolamine. Psychopharmacology 174:396–405

    Article  PubMed  CAS  Google Scholar 

  • Besheer J, Short KR, Bevins RA (2001) Dopaminergic and cholinergic antagonism in a novel-object detection task with rats. Behav Brain Res 126:211–217

    Article  PubMed  CAS  Google Scholar 

  • Bhatara VS, Aparasu RR (2007) Pharmacotherapy with atomoxetine for US children and adolescents. Ann Clin Psychiatry 19:175–180

    Article  PubMed  Google Scholar 

  • Block RA, Hancock PA, Zakay D (1998) Human aging and duration judgments: a meta-analytic review. Psychol Aging 13:584–596

    Article  PubMed  CAS  Google Scholar 

  • Bouger PC, Spowart-Manning L, Ferrara A, Schmidt BH, Van Der Staay FJ (2004) Effects of acute and repeated administration of a cholinesterase inhibitor on timing behaviour. Eur Neuropsychopharmacol 14:285–294

    Article  PubMed  CAS  Google Scholar 

  • Brunner D, Kacelnik A, Gibbon J (1996) Memory for inter-reinforcement interval variability and patch departure decisions in the starling, Sturnus vulgaris. Anim Behav 51:1025–1045

    Article  Google Scholar 

  • Buhusi CV, Meck WH (2002) Differential effects of methamphetamine and haloperidol on the control of an internal clock. Behav Neurosci 116:291–297

    Article  PubMed  CAS  Google Scholar 

  • Buhusi CV, Meck WH (2005) What makes us tick? Functional and neural mechanisms of interval timing. Nat Rev Neurosci 6:755–765

    Article  PubMed  CAS  Google Scholar 

  • Buresová O, Bolhuis JJ, Bures J (1986) Differential effects of cholinergic blockade on performance of rats in the water tank navigation task and in a radial water maze. Behav Neurosci 100:476–482

    Article  PubMed  Google Scholar 

  • Catania AC (1970) Reinforcement schedules and psychophysical judgments: a study of some temporal properties of behavior. In: Schoenfeld WN (ed) The theory of reinforcement schedules. Appleton-Century-Crofts, New York, pp 1–42

    Google Scholar 

  • Çevik MO (2003) Effects of methamphetamine on duration discrimination. Behav Neurosci 117:774–787

    Article  PubMed  Google Scholar 

  • Chamberlain SR, Muller U, Blackwell AD, Clark LT, Robbins TW, Sahakian BJ (2006) Neurochemical modulation of response inhibition and probabilistic learning in humans. Science 311:861–863

    Article  PubMed  CAS  Google Scholar 

  • Chamberlain SR, del Campo N, Dowson J, Muller U, Clark L, Robbins TW, Sahakian BJ (2007) Response inhibition in adults with attention-deficit hyper-activity disorder was improved by a single oral dose of atomoxetine. Biol Psychiatry 62:977–984

    Article  PubMed  CAS  Google Scholar 

  • Cheng K, Westwood R (1993) Analysis of single trials in pigeons’ timing performance. J Exp Psychol Anim Behav Process 19:56–67

    Article  Google Scholar 

  • Cheng RK, Ali YM, Meck WH (2007a) Ketamine “unlocks” the reduced clock-speed effect of cocaine following extended training: evidence for dopamine–glutamine interactions in timing and time perception. Neurobiol Learn Mem 88:149–159

    Article  PubMed  CAS  Google Scholar 

  • Cheng RK, Hahak O, Meck WH (2007b) Habit formation and the loss of control of an internal clock: inverse relationship between the level of baseline training and the clock-speed enhancing effects of methamphetamine. Psychopharmacology 193:351–362

    Article  PubMed  CAS  Google Scholar 

  • Chiang T-J, Al-Ruwaitea ASA, Mobini S, Ho M-Y, Bradshaw CM, Szabadi E (2000) The effect of d-amphetamine on performance on two operant timing schedules. Psychopharmacology (Berl) 150:170–184

    Article  CAS  Google Scholar 

  • Church RM, Deluty MZ (1977) The bisection of temporal intervals. J Exp Psychol Anim Behav Process 3:216–228

    Article  PubMed  CAS  Google Scholar 

  • Church RM, Gibbon J (1982) Temporal generalization. J Exp Psychol Anim Behav Process 8:165–186

    Article  PubMed  CAS  Google Scholar 

  • Church RM, Miller KD, Meck WH, Gibbon J (1991) Symmetrical and asymmetrical sources of variance in temporal generalization. Anim Learn Behav 19:207–214

    Google Scholar 

  • Church RM, Meck WH, Gibbon J (1994) Application of scalar timing theory to individual trials. J Exp Psychol Anim Behav Process 20:135–155

    Article  PubMed  CAS  Google Scholar 

  • Davalos DB, Kisley MA, Freedman R (2005) Behavioral and electrophysiological indices of temporal processing dysfunction in schizophrenia. J Neuropsychiatry Clin Neurosci 17:517–525

    PubMed  Google Scholar 

  • Davis JA, Gould TJ (2007) Atomoxetine reverses nicotine withdrawal-associated deficits in contextual fear conditioning. Neuropsychopharmacology 32:2011–2019

    Article  PubMed  CAS  Google Scholar 

  • Densen ME (1977) Time perception and schizophrenia. Percept Motor Skills 44:436–438

    PubMed  CAS  Google Scholar 

  • Dodart JC, Mathis C, Ungerer A (2002) Scopolamine-induced deficits in a two-trial object recognition task in mice. NeuroReport 8:1173–1178

    Article  Google Scholar 

  • Dunn MJ, Killcross S (2006) Differential attenuation of d-amphetamine-induced disruption of conditional discrimination performance by dopamine and serotonin antagonists. Psychopharmacology 188:183–192

    Article  PubMed  CAS  Google Scholar 

  • Elvevag B, McCormack T, Gilbert A, Brown GD, Weinberger DR, Goldberg TE (2003) Duration judgements in patients with schizophrenia. Psychol Med 33:1249–1261

    Article  PubMed  CAS  Google Scholar 

  • Gallistel CR, King A, McDonald R (2004) Sources of variability and systematic error in mouse timing behavior. J Exp Psychol Anim Behav Process 30:3–16

    Article  PubMed  CAS  Google Scholar 

  • Gibbon J (1977) Scalar expectancy theory and Weber’s law in animal timing. Psychol Rev 84:279–325

    Article  Google Scholar 

  • Gibbon J (1991) Origins of scalar timing. Learn Motiv 22:3–38

    Article  Google Scholar 

  • Gibbon J, Church RM, Meck WH (1984) Scalar timing in memory. Ann N Y Acad Sci 423:52–77

    Article  PubMed  CAS  Google Scholar 

  • Grilly DM (2000) A verification of psychostimulant-induced improvement in sustained attention in rats: effects of d-amphetamine, nicotine, and pemoline. Exp Clin Psychopharmac 8:14–21

    Article  CAS  Google Scholar 

  • Grilly DM, Gowans GC (1988) Effects of naltrexone, d-amphetamine, and their interaction on the stimulus control of choice behavior in rats. Psychopharmacology 96:73–80

    Article  PubMed  CAS  Google Scholar 

  • Grilly DM, Gowans GC, McCann DS, Grogan TW (1989) Effects of cocaine and d-amphetamine on sustained and selective attention in rats. Pharmacol Biochem Behav 33:733–739

    Article  PubMed  CAS  Google Scholar 

  • Idris NF, Repeto O, Neill JC, Large CH (2005) Investigation of the effects of lamotrigine and clozapine in improving reversal learning impairments induced by acute phencyclidine and D-amphetamine in the rat. Psychopharmacology 179:15–22

    Article  CAS  Google Scholar 

  • Kamei H, Nagai T, Nakano H, Togan Y, Takayanagi M, Takahashi K, Kobayashi K, Yoshida S, Maeda K, Takuma K, Nabeshima T, Yamada K (2006) Repeated methamphetamine treatment impairs recognition memory through a failure of novelty-induced ERK1/2 activation in the prefrontal cortex of mice. Biol Psychiatry 59:75–84

    Article  PubMed  CAS  Google Scholar 

  • Ludvig EA, Conover K, Shizgal P (2007) The effects of reward magnitude on timing in rats. J Exp Anal Behav 87:201–218

    Article  PubMed  Google Scholar 

  • Ludvig EA, Balci F, Longpre KM (2008) Timescale dependence in a conditional temporal discrimination procedure. Behav Processes 77:357–363

    Article  PubMed  Google Scholar 

  • Malapani C, Rakitin B, Meck WH, Deweer B, Dubois B, Gibbon J (1998) Coupled temporal memories in Parkinson’s disease: a dopamine-related dysfunction. J Cogn Neurosci 10:316–331

    Article  PubMed  CAS  Google Scholar 

  • Maricq AV, Church RM (1983) The differential effects of haloperidol and methamphetamine on time estimation in the rat. Psychopharmacology 79:10–15

    Article  PubMed  CAS  Google Scholar 

  • Maricq AV, Roberts S, Church RM (1981) Methamphetamine and time estimation. J Exp Psychol Anim Behav Proc 7:18–30

    Article  CAS  Google Scholar 

  • Marshall JF, Belcher AM, Feinstein EM, O’Dell SJ (2007) Methamphetamine-induced neural and cognitive changes in rodents. Addiction 102:61–69

    Article  PubMed  Google Scholar 

  • Matell MS, King GR, Meck WH (2004) Differential modulation of clock speed by the administration of intermittent versus continuous cocaine. Behav Neurosci 118:150–156

    Article  PubMed  CAS  Google Scholar 

  • Matell MS, Bateson M, Meck WH (2006) Single-trials analyses demonstrate that increases in clock speed contribute to the methamphetamine-induced horizontal shifts in peak-interval timing functions. Psychopharmacology 188:201–212

    Article  PubMed  CAS  Google Scholar 

  • McClure EA, Saulsgiver KA, Wynne CDL (2005) Effects of d-amphetamine on temporal discrimination in pigeons. Behav Pharmacol 16:193–208

    Article  PubMed  CAS  Google Scholar 

  • Meck WH (1996) Neuropharmacology of timing and time perception. Brain Res Cogn Brain Res 3:227–242

    Article  PubMed  CAS  Google Scholar 

  • Meck WH, Church RM (1987) Cholinergic modulation of the content of temporal memory. Behav Neurosci 101:457–464

    Article  PubMed  CAS  Google Scholar 

  • Navarra R, Graf R, Huang Y, Logue S, Comery T, Hughes Z, Day M (2008) Effects of atomoxetine and methylphenidate on attention and impulsivity in the 5-choice serial reaction time test. Prog Neuropsychopharmacol Biol Psychiatry 32:34–41

    Article  PubMed  CAS  Google Scholar 

  • Norman C, Cassaday HJ (2003) Amphetamine increases aversive conditioning to diffuse contextual stimuli and to a discrete trace stimulus when conditioned at higher footshock intensity. J Psychopharmacol 17:67–76

    Article  PubMed  CAS  Google Scholar 

  • NRC (1996) Guide for the care and use of laboratory animals. National Academy, Washington, DC

    Google Scholar 

  • Odum AL (2002) Behavioral pharmacology and timing. Behav Process 57:107–120

    Article  Google Scholar 

  • Odum AL, Lieving LM, Schaal DW (2002) Effects of d-amphetamine in a temporal discrimination procedure: Selective changes in timing or rate dependency? J Exp Anal Behav 78:195–214

    Article  PubMed  Google Scholar 

  • Okaichi H, Jarrard LE (1982) Scopolamine impairs performance of a place and cue task in rats. Behav Neural Biol 35:319–325

    Article  PubMed  CAS  Google Scholar 

  • Olaman S, McNaughton N (2001) Chlordiazepoxide specifically impairs non-spatial reference memory in the cued radial arm maze in rats. Pharmacol Biochem Behav 70:133–139

    Article  PubMed  CAS  Google Scholar 

  • Ormerod BK, Beninger RJ (2002) Water maze versus radial maze: differential performance of rats in a spatial delayed match-to-position task and response to scopolamine. Behav Brain Res 128:139–152

    Article  PubMed  CAS  Google Scholar 

  • Paulsen JS, Zimbelman JL, Hinton SC, Langbehn DR, Leveroni CL, Benjamin ML, Reynolds NC, Rao SM (2004) fMRI biomarker of early neuronal dysfunction in presymptomatic Huntington’s disease. AJNR Am J Neuroradiol 25:1715–1721

    PubMed  Google Scholar 

  • Peele DB, Baron SP (1988) Effects of scopolamine on repeated acquisition of radial-arm maze performance by rats. J Exp Anal Behav 49:275–290

    Article  PubMed  CAS  Google Scholar 

  • Penney TB, Meck WH, Roberts SA, Gibbon J, Erlenmeyer-Kimling L (2005) Interval-timing deficits in individuals at high risk for schizophrenia. Brain Cogn 58:109–118

    Article  PubMed  Google Scholar 

  • Platt JR, Davis ER (1983) Bisection of temporal intervals by pigeons. J Exp Psychol Anim Behav Process 9:160–170

    Article  PubMed  CAS  Google Scholar 

  • Rammsayer T, Classen W (1997) Impaired temporal discrimination in Parkinson’s disease: temporal processing of brief durations as an indicator of degeneration of dopaminergic neurons in the basal ganglia. Int J Neurosci 91:45–55

    Article  PubMed  CAS  Google Scholar 

  • Ridley RM, Baker HF, Frith CD, Dowdy J, Crow TJ (1988) Stereotyped responding on a two-choice guessing task by marmosets and humans treated with amphetamine. Psychopharmacology 95:560–564

    PubMed  CAS  Google Scholar 

  • Roberts S (1981) Isolation of an internal clock. J Exp Psychol Anim Behav Process 7:242–268

    Article  PubMed  CAS  Google Scholar 

  • Rommelse NNJ, Oosterlaan J, Buitelaar J, Faraone VF, Sergeant JA (2007) Time reproduction in children with ADHD and their non-affected siblings. J Am Acad Child Adolesc Psychiatry 46:582–590

    Article  PubMed  Google Scholar 

  • Sagvolden T, Xu T (2008) 1-Amphetamine improves poor sustained attention while d-amphetamine reduces overactivity and impulsiveness as well as improves sustained attention in an animal model of Attention-Deficit/Hyperactivity Disorder (ADHD). Behav Brain Funct 4:3

  • Salmon P, Gray JA (1985) Comparison between the effects of propranolol and chlordiazepoxide on timing behaviour in the rat. Psychopharmacology 87:219–224

    Article  PubMed  CAS  Google Scholar 

  • Salo R, Nordahl TE, Sullivan EV, Possin K, Boitor I, Leamon MH, Gibson DR, Galloway G, Flynn NM, Henik A, Pfefferbaum A (2002) Preliminary evidence of reduced cognitive inhibition in methamphetamine-dependent individuals. Psychiatry Res 111:65–74

    Article  PubMed  Google Scholar 

  • Saulsgiver KA, McClure EA, Wynne CD (2006) Effects of d-amphetamine on the behavior of pigeons exposed to the peak procedure. Behav Processes 71:268–285

    Article  PubMed  CAS  Google Scholar 

  • Shannon HE, Love PL (2005) Effects of antiepileptic drugs on attention as assessed by a five-choice serial reaction time task in rats. Epilepsy Behav 5:857–865

    Article  Google Scholar 

  • Stackman RW, Walsh TJ (1992) Chlordiazepoxide-induced working memory impairments: site specificity and reversal by flumazenil (R015-1788). Behav Neural Biol 109:436–445

    Google Scholar 

  • Staddon JER, Higa JJ (1999) Time and memory: towards a pacemaker-free theory of interval timing. J Exp Anal Behav 71:215–251

    Article  PubMed  CAS  Google Scholar 

  • Stubbs DA, Thomas JR (1974) Discrimination of stimulus duration and d-amphetamine in pigeons: a psychophysical analysis. Psychopharmacologia 36:313–322

    Article  PubMed  CAS  Google Scholar 

  • Taylor KM, Horvitz JC, Balsam PD (2007) Amphetamine affects the start of responding in the peak interval timing task. Behav Processes 74:168–175

    Article  PubMed  Google Scholar 

  • Treisman M (1963) Temporal discrimination and the indifference interval: implications for a model of the “internal clock”. Psychol Monogr 77:1–31

    PubMed  CAS  Google Scholar 

  • Toplak ME, Dockstader C, Tannock R (2006) Temporal information processing in ADHD: findings to date and new methods. J Neurosci Methods 151:15–29

    Article  PubMed  Google Scholar 

  • Tzavara ET, Bymaster FP, Overshiner CD, Davis RJ, Perry KW, Wolff M, McKinzie DL, Witkin JM, Nomikos GG (2006) Procholinergic and memory enhancing properties of the selective norepinephrine uptake inhibitor atomoxetine. Mol Psychiatry 11:187–195

    Article  PubMed  CAS  Google Scholar 

  • Underwood G (1975) Attention and the perception of duration during encoding and retrieval. Perception 4:291–296

    Article  Google Scholar 

  • Wesnes KA, Simpson PM, White L, Pinker S, Jertz G, Murphy M, Siegfried K (1991) Cholinesterase inhibition in the scopolamine model of dementia. Ann N Y Acad Sci 640:268–271

    PubMed  CAS  Google Scholar 

  • Yang B, Chan RCK, Zou X, Jing J, Mai J, Li J (2007) Time perception deficit in children with ADHD. Brain Res 1170:90–96

    Article  PubMed  CAS  Google Scholar 

  • Zhang HT, O’Donnell JM (2000) Effects of rolipram on scopolamine-induced impairment of working and reference memory in the radial-arm maze tests in rats. Psychopharmacology 150:311–316

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Fuat Balci.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Balci, F., Ludvig, E.A., Gibson, J.M. et al. Pharmacological manipulations of interval timing using the peak procedure in male C3H mice. Psychopharmacology 201, 67–80 (2008). https://doi.org/10.1007/s00213-008-1248-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00213-008-1248-y

Keywords

Navigation