Skip to main content
Log in

A neurocognitive animal model dissociating between acute illness and remission periods of schizophrenia

  • Review
  • Published:
Psychopharmacology Aims and scope Submit manuscript

Abstract

Rationale

The development and validation of animal models of the cognitive impairments of schizophrenia have remained challenging subjects.

Objective

We review evidence from a series of experiments concerning an animal model that dissociates between the disruption of attentional capacities during acute illness periods and the cognitive load-dependent impairments that characterize periods of remission. The model focuses on the long-term attentional consequences of an escalating-dosing pretreatment regimen with amphetamine (AMPH).

Results

Acute illness periods are modeled by the administration of AMPH challenges. Such challenges result in extensive impairments in attentional performance and the “freezing” of performance-associated cortical acetylcholine (ACh) release at pretask levels. During periods of remission (in the absence of AMPH challenges), AMPH-pretreated animals’ attentional performance is associated with abnormally high levels of performance-associated cortical ACh release, indicative of the elevated attentional effort required to maintain performance. Furthermore, and corresponding with clinical evidence, attentional performance during remission periods is exquisitely vulnerable to distractors, reflecting impaired top-down control and abnormalities in fronto–mesolimbic–basal forebrain circuitry. Finally, this animal model detects the moderately beneficial cognitive effects of low-dose treatment with haloperidol and clozapine that were observed in clinical studies.

Conclusions

The usefulness and limitations of this model for research on the neuronal mechanisms underlying the cognitive impairments in schizophrenia and for drug-finding efforts are discussed.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

Notes

  1. The task described in this manuscript was recently selected by the CNTRICS initiative (Cognitive Neuroscience Treatment Research to Improve Cognition in Schizophrenia) for development for assessing the domain “control of attention” (http://cntrics.ucdavis.edu/meetings.shtml).

References

  • Aasen I, Kumari V, Sharma T (2005) Effects of rivastigmine on sustained attention in schizophrenia: an FMRI study. J Clin Psychopharmacol 25:311–317

    PubMed  CAS  Google Scholar 

  • Abi-Dargham A, Gil R, Krystal J, Baldwin RM, Seibyl JP, Bowers M, van Dyck CH, Charney DS, Innis RB, Laruelle M (1998) Increased striatal dopamine transmission in schizophrenia: confirmation in a second cohort. Am J Psychiatry 155:761–767

    PubMed  CAS  Google Scholar 

  • Addington J, Addington D, Maticka-Tyndale E (1991) Cognitive functioning and positive and negative symptoms in schizophrenia. Schizophr Res 5:123–134

    PubMed  CAS  Google Scholar 

  • Amitai N, Semenova S, Markou A (2007) Cognitive-disruptive effects of the psychotomimetic phencyclidine and attenuation by atypical antipsychotic medications in rats. Psychopharmacology 193:521–537

    PubMed  CAS  Google Scholar 

  • Andreasen NC, Carpenter WT Jr, Kane JM, Lasser RA, Marder SR, Weinberger DR (2005) Remission in schizophrenia: proposed criteria and rationale for consensus. Am J Psychiatry 162:441–449

    PubMed  Google Scholar 

  • Antelman SM, Eichler AJ, Black CA, Kocan D (1980) Interchangeability of stress and amphetamine in sensitization. Science 207:329–331

    PubMed  CAS  Google Scholar 

  • Arnold HM, Burk JA, Hodgson EM, Sarter M, Bruno JP (2002) Differential cortical acetylcholine release in rats performing a sustained attention task versus behavioral control tasks that do not explicitly tax attention. Neuroscience 114:451–460

    PubMed  CAS  Google Scholar 

  • Bartlett E, Hallin A, Chapman B, Angrist B (1997) Selective sensitization to the psychosis-inducing effects of cocaine: a possible marker for addiction relapse vulnerability? Neuropsychopharmacology 16:77–82

    PubMed  CAS  Google Scholar 

  • Belcher AM, O’Dell SJ, Marshall JF (2006) A sensitizing regimen of methamphetamine causes impairments in a novelty preference task of object recognition. Behav Brain Res 170:167–172

    PubMed  CAS  Google Scholar 

  • Bell DS (1965) Comparison of amphetamine psychosis and schizophrenia. Br J Psychiatry 111:701–707

    PubMed  CAS  Google Scholar 

  • Bell DS (1973) The experimental reproduction of amphetamine psychosis. Arch Gen Psychiatry 29:35–40

    PubMed  CAS  Google Scholar 

  • Berman I, Viegner B, Merson A, Allan E, Pappas D, Green AI (1997) Differential relationships between positive and negative symptoms and neuropsychological deficits in schizophrenia. Schizophr Res 25:1–10

    PubMed  CAS  Google Scholar 

  • Beuzen JN, Taylor N, Wesnes K, Wood A (1999) A comparison of the effects of olanzapine, haloperidol and placebo on cognitive and psychomotor functions in healthy elderly volunteers. J Psychopharmacol 13:152–158

    PubMed  CAS  Google Scholar 

  • Birkett P, Brindley A, Norman P, Harrison G, Baddeley A (2006) Control of attention in schizophrenia. J Psychiatr Res 40:579–588

    PubMed  Google Scholar 

  • Bleuler E (1950) Dementia praecox or the group of schizophrenias. International Universities Press, New York

    Google Scholar 

  • Braff DL (1993) Information processing and attention dysfunctions in schizophrenia. Schizophr Bull 19:233–259

    PubMed  CAS  Google Scholar 

  • Braff DL, Light GA (2004) Preattentional and attentional cognitive deficits as targets for treating schizophrenia. Psychopharmacology 174:75–85

    PubMed  CAS  Google Scholar 

  • Braff DL, Saccuzzo DP (1982) Effect of antipsychotic medication on speed of information processing in schizophrenic patients. Am J Psychiatry 139:1127–1130

    PubMed  CAS  Google Scholar 

  • Brebion G, Amador X, Smith MJ, Malaspina D, Sharif Z, Gorman JM (1999) Opposite links of positive and negative symptomatology with memory errors in schizophrenia. Psychiatry Res 88:15–24

    PubMed  CAS  Google Scholar 

  • Breier A, Su TP, Saunders R, Carson RE, Kolachana BS, de Bartolomeis A, Weinberger DR, Weisenfeld N, Malhotra AK, Eckelman WC, Pickar D (1997) Schizophrenia is associated with elevated amphetamine-induced synaptic dopamine concentrations: evidence from a novel positron emission tomography method. Proc Natl Acad Sci U S A 94:2569–2574

    PubMed  CAS  Google Scholar 

  • Bushnell PJ, Oshiro WM, Padnos BK (1997) Detection of visual signals by rats: effects of chlordiazepoxide and cholinergic and adrenergic drugs on sustained attention. Psychopharmacology 134:230–241

    PubMed  CAS  Google Scholar 

  • Bushnell PJ, Benignus VA, Case MW (2003) Signal detection behavior in humans and rats: a comparison with matched tasks. Behav Processes 64:121–129

    PubMed  Google Scholar 

  • Bymaster FP, Calligaro DO, Falcone JF, Marsh RD, Moore NA, Tye NC, Seeman P, Wong DT (1996) Radioreceptor binding profile of the atypical antipsychotic olanzapine. Neuropsychopharmacology 14:87–96

    PubMed  CAS  Google Scholar 

  • Cassens G, Inglis AK, Appelbaum PS, Gutheil TG (1990) Neuroleptics: effects on neuropsychological function in chronic schizophrenic patients. Schizophr Bull 16:477–499

    PubMed  CAS  Google Scholar 

  • Castner SA, Goldman-Rakic PS (1999) Long-lasting psychotomimetic consequences of repeated low-dose amphetamine exposure in rhesus monkeys. Neuropsychopharmacology 20:10–28

    PubMed  CAS  Google Scholar 

  • Castner SA, Goldman-Rakic PS (2003) Amphetamine sensitization of hallucinatory-like behaviors is dependent on prefrontal cortex in nonhuman primates. Biol Psychiatry 54:105–110

    PubMed  CAS  Google Scholar 

  • Castner SA, Vosler PS, Goldman-Rakic PS (2005) Amphetamine sensitization impairs cognition and reduces dopamine turnover in primate prefrontal cortex. Biol Psychiatry 57:743–751

    PubMed  CAS  Google Scholar 

  • Cheal M (1984) Differential effects of haloperidol and clozapine on attention. Psychopharmacology 84:268–273

    PubMed  CAS  Google Scholar 

  • Cohen RM, Semple WE, Gross M, King AC, Nordahl TE (1992) Metabolic brain pattern of sustained auditory discrimination. Exp Brain Res 92:165–172

    PubMed  CAS  Google Scholar 

  • Cohen RM, Nordahl TE, Semple WE, Andreason P, Pickar D (1998) Abnormalities in the distributed network of sustained attention predict neuroleptic treatment response in schizophrenia. Neuropsychopharmacology 19:36–47

    PubMed  CAS  Google Scholar 

  • Cohen JD, Barch DM, Carter C, Servan-Schreiber D (1999) Context-processing deficits in schizophrenia: converging evidence from three theoretically motivated cognitive tasks. J Abnorm Psychol 108:120–133

    PubMed  CAS  Google Scholar 

  • Crider A, Solomon PR, McMahon MA (1982) Disruption of selective attention in the rat following chronic d-amphetamine administration: relationship to schizophrenic attention disorder. Biol Psychiatry 17:351–361

    PubMed  CAS  Google Scholar 

  • Crombag HS, Badiani A, Robinson TE (1996) Signalled versus unsignalled intravenous amphetamine: large differences in the acute psychomotor response and sensitization. Brain Res 722:227–231

    PubMed  CAS  Google Scholar 

  • Crombag HS, Badiani A, Maren S, Robinson TE (2000) The role of contextual versus discrete drug-associated cues in promoting the induction of psychomotor sensitization to intravenous amphetamine. Behav Brain Res 116:1–22

    PubMed  CAS  Google Scholar 

  • Crombag HS, Badiani A, Chan J, Dell’Orco J, Dineen SP, Robinson TE (2001) The ability of environmental context to facilitate psychomotor sensitization to amphetamine can be dissociated from its effect on acute drug responsiveness and on conditioned responding. Neuropsychopharmacology 24:680–690

    PubMed  CAS  Google Scholar 

  • Crook JM, Tomaskovic-Crook E, Copolov DL, Dean B (2000) Decreased muscarinic receptor binding in subjects with schizophrenia: a study of the human hippocampal formation. Biol Psychiatry 48:381–388

    PubMed  CAS  Google Scholar 

  • Crook JM, Tomaskovic-Crook E, Copolov DL, Dean B (2001) Low muscarinic receptor binding in prefrontal cortex from subjects with schizophrenia: a study of Brodmann’s areas 8, 9, 10, and 46 and the effects of neuroleptic drug treatment. Am J Psychiatry 158:918–925

    PubMed  CAS  Google Scholar 

  • Dalley JW, McGaughy J, O’Connell MT, Cardinal RN, Levita L, Robbins TW (2001) Distinct changes in cortical acetylcholine and noradrenaline efflux during contingent and noncontingent performance of a visual attentional task. J Neurosci 21:4908–4914

    PubMed  CAS  Google Scholar 

  • Dalley JW, Theobald DE, Berry D, Milstein JA, Laane K, Everitt BJ, Robbins TW (2005) Cognitive sequelae of intravenous amphetamine self-administration in rats: evidence for selective effects on attentional performance. Neuropsychopharmacology 30:525–537

    PubMed  CAS  Google Scholar 

  • De Luca V, Voineskos S, Wong G, Kennedy JL (2006) Genetic interaction between alpha4 and beta2 subunits of high affinity nicotinic receptor: analysis in schizophrenia. Exp Brain Res 174:292–296

    PubMed  CAS  Google Scholar 

  • Dean B, McLeod M, Keriakous D, McKenzie J, Scarr E (2002) Decreased muscarinic1 receptors in the dorsolateral prefrontal cortex of subjects with schizophrenia. Mol Psychiatry 7:1083–1091

    PubMed  CAS  Google Scholar 

  • Dean B, Bymaster FP, Scarr E (2003) Muscarinic receptors in schizophrenia. Curr Mol Med 3:419–426

    PubMed  CAS  Google Scholar 

  • Demeter E, Sarter M, Lustig C (2008) Rats and humans paying attention: cross-species task development for translational research. Neuropsychology, in press

  • Deng C, Huang XF (2005) Decreased density of muscarinic receptors in the superior temporal gyrusin schizophrenia. J Neurosci Res 81:883–890

    PubMed  CAS  Google Scholar 

  • Dollfus S, Petit M (1995) Negative symptoms in schizophrenia: their evolution during an acute phase. Schizophr Res 17:187–194

    PubMed  CAS  Google Scholar 

  • Ellinwood EH (1972) Amphetamine psychosis: individuals, settings, and sequences. In: Ellinwood EH, Cohen S (eds) Current concepts on amphetamine abuse. US Government Printing Office, Washington, D.C., pp 143–157

    Google Scholar 

  • Ellison G, Eison MS, Huberman HS, Daniel F (1978) Long-term changes in dopaminergic innervation of caudate nucleus after continuous amphetamine administration. Science 201:276–278

    PubMed  CAS  Google Scholar 

  • Erickson SK, Schwarzkopf SB, Palumbo D, Badgley-Fleeman J, Smirnow AM, Light GA (2005) Efficacy and tolerability of low-dose donepezil in schizophrenia. Clin Neuropharmacol 28:179–184

    PubMed  CAS  Google Scholar 

  • Everitt BJ, Robbins TW (1997) Central cholinergic systems and cognition. Annu Rev Psychol 48:649–684

    PubMed  CAS  Google Scholar 

  • Featherstone RE, Kapur S, Fletcher PJ (2007) The amphetamine-induced sensitized state as a model of schizophrenia. Prog Neuropsychopharmacol Biol Psychiatry 31:1556–1571

    PubMed  CAS  Google Scholar 

  • Filbey FM, Toulopoulou T, Morris RG, McDonald C, Bramon E, Walshe M, Murray RM (2008) Selective attention deficits reflect increased genetic vulnerability to schizophrenia. Schizophr Res 101:169–175

    PubMed  Google Scholar 

  • Fisk AD, Scerbo MW (1987) Automatic and control processing approach to interpreting vigilance performance: a review and reevaluation. Hum Factors 29:653–660

    PubMed  CAS  Google Scholar 

  • Fletcher PJ, Tenn CC, Rizos Z, Lovic V, Kapur S (2005) Sensitization to amphetamine, but not PCP, impairs attentional set shifting: reversal by a D1 receptor agonist injected into the medial prefrontal cortex. Psychopharmacology 183:190–200

    PubMed  CAS  Google Scholar 

  • Fletcher PJ, Tenn CC, Sinyard J, Rizos Z, Kapur S (2007) A sensitizing regimen of amphetamine impairs visual attention in the 5-choice serial reaction time test: reversal by a D1 receptor agonist injected into the medical prefrontal cortex. Neuropsychopharmacology 32:1122–1132

    PubMed  CAS  Google Scholar 

  • Floresco SB, Geyer MA, Gold LH, Grace AA (2005) Developing predictive animal models and establishing a preclinical trials network for assessing treatment effects on cognition in schizophrenia. Schizophr Bull 31:888–894

    PubMed  Google Scholar 

  • Friedman JI (2004) Cholinergic targets for cognitive enhancement in schizophrenia: focus on cholinesterase inhibitors and muscarinic agonists. Psychopharmacology 174:45–53

    PubMed  CAS  Google Scholar 

  • Friedman JI, Adler DN, Howanitz E, Harvey PD, Brenner G, Temporini H, White L, Parrella M, Davis KL (2002) A double blind placebo controlled trial of donepezil adjunctive treatment to risperidone for the cognitive impairment of schizophrenia. Biol Psychiatry 51:349–357

    PubMed  CAS  Google Scholar 

  • Fuller RL, Luck SJ, Braun EL, Robinson BM, McMahon RP, Gold JM (2006) Impaired control of visual attention in schizophrenia. J Abnorm Psychol 115:266–275

    PubMed  Google Scholar 

  • Gilbert CD, Sigman M (2007) Brain states: top-down influences in sensory processing. Neuron 54:677–696

    PubMed  CAS  Google Scholar 

  • Gill TM, Sarter M, Givens B (2000) Sustained visual attention performance-associated prefrontal neuronal activity: evidence for cholinergic modulation. J Neurosci 20:4745–4757

    PubMed  CAS  Google Scholar 

  • Gold JM, Fuller RL, Robinson BM, Braun EL, Luck SJ (2007) Impaired top-down control of visual search in schizophrenia. Schizophr Res 94:148–155

    PubMed  Google Scholar 

  • Goldberg TE, Patterson KJ, Taqqu Y, Wilder K (1998) Capacity limitations in short-term memory in schizophrenia: tests of competing hypotheses. Psychol Med 28:665–673

    PubMed  CAS  Google Scholar 

  • Goldstein G, Shemansky WJ (1995) Influences on cognitive heterogeneity in schizophrenia. Schizophr Res 18:59–69

    PubMed  CAS  Google Scholar 

  • Gorissen M, Sanz JC, Schmand B (2005) Effort and cognition in schizophrenia patients. Schizophr Res 78:199–208

    PubMed  Google Scholar 

  • Goto Y, Grace AA (2005) Dopamine-dependent interactions between limbic and prefrontal cortical plasticity in the nucleus accumbens: disruption by cocaine sensitization. Neuron 47:255–266

    PubMed  CAS  Google Scholar 

  • Green MF (1996) What are the functional consequences of neurocognitive deficits in schizophrenia? Am J Psychiatry 153:321–330

    PubMed  CAS  Google Scholar 

  • Green MF, Marder SR, Glynn SM, McGurk SR, Wirshing WC, Wirshing DA, Liberman RP, Mintz J (2002) The neurocognitive effects of low-dose haloperidol: a two-year comparison with risperidone. Biol Psychiatry 51:972–978

    PubMed  CAS  Google Scholar 

  • Grigoryan G, Hodges H, Mitchell S, Sinden JD, Gray JA (1996) 6-OHDA lesions of the nucleus accumbens accentuate memory deficits in animals with lesions to the forebrain cholinergic projection system: effects of nicotine administration on learning and memory in the water maze. Neurobiol Learn Mem 65:135–153

    PubMed  CAS  Google Scholar 

  • Grillon C, Courchesne E, Ameli R, Geyer MA, Braff DL (1990) Increased distractibility in schizophrenic patients. Electrophysiologic and behavioral evidence. Arch Gen Psychiatry 47:171–179

    PubMed  CAS  Google Scholar 

  • Grillon C, Ameli R, Courchesne E, Braff DL (1991) Effects of task relevance and attention on P3 in schizophrenic patients. Schizophr Res 4:11–21

    PubMed  CAS  Google Scholar 

  • Gruzelier JH, Hammond NV (1978) The effect of chlorpromazine upon psychophysiological, endocrine and information processing measures in schizophrenia. J Psychiatr Res 14:167–182

    PubMed  CAS  Google Scholar 

  • Gur RE, Turetsky BI, Loughead J, Snyder W, Kohler C, Elliott M, Pratiwadi R, Ragland JD, Bilker WB, Siegel SJ, Kanes SJ, Arnold SE, Gur RC (2007) Visual attention circuitry in schizophrenia investigated with oddball event-related functional magnetic resonance imaging. Am J Psychiatry 164:442–449

    PubMed  Google Scholar 

  • Hagan JJ, Jones DN (2005) Predicting drug efficacy for cognitive deficits in schizophrenia. Schizophr Bull 31:830–853

    PubMed  Google Scholar 

  • Hasselmo ME, McGaughy J (2004) High acetylcholine levels set circuit dynamics for attention and encoding and low acetylcholine levels set dynamics for consolidation. Progr Brain Res 145:201–231

    Google Scholar 

  • Heimer L (2000) Basal forebrain in the context of schizophrenia. Brain Res Rev 31:205–235

    PubMed  CAS  Google Scholar 

  • Himmelheber AM, Sarter M, Bruno JP (1997) Operant performance and cortical acetylcholine release: role of response rate, reward density, and non-contingent stimuli. Cogn Brain Res 6:23–36

    CAS  Google Scholar 

  • Himmelheber AM, Sarter M, Bruno JP (2000) Increases in cortical acetylcholine release during sustained attention performance in rats. Cogn Brain Res 9:313–325

    CAS  Google Scholar 

  • Homayoun H, Moghaddam B (2006) Progression of cellular adaptations in medial prefrontal and orbitofrontal cortex in response to repeated amphetamine. J Neurosci 26:8025–8039

    PubMed  CAS  Google Scholar 

  • Hughes KM, Popi L, Wolgin DL (1998) Experiential constraints on the development of tolerance to amphetamine hypophagia following sensitization of stereotypy: instrumental contingencies regulate the expression of sensitization. Psychopharmacology 140:445–449

    PubMed  CAS  Google Scholar 

  • Hyde TM, Crook JM (2001) Cholinergic systems and schizophrenia: primary pathology or epiphenomena? J Chem Neuroanat 22:53–63

    PubMed  CAS  Google Scholar 

  • Ichikawa J, Dai J, O’Laughlin IA, Fowler WL, Meltzer HY (2002) Atypical, but not typical, antipsychotic drugs increase cortical acetylcholine release without an effect in the nucleus accumbens or striatum. Neuropsychopharmacology 26:325–339

    PubMed  CAS  Google Scholar 

  • Janowsky DS, Risch C (1979) Amphetamine psychosis and psychotic symptoms. Psychopharmacology 65:73–77

    PubMed  CAS  Google Scholar 

  • Jazbec S, Pantelis C, Robbins T, Weickert T, Weinberger DR, Goldberg TE (2007) Intra-dimensional/extra-dimensional set-shifting performance in schizophrenia: impact of distractors. Schizophr Res 89:339–349

    PubMed  Google Scholar 

  • Kapur S (2003) Psychosis as a state of aberrant salience: a framework linking biology, phenomenology, and pharmacology in schizophrenia. Am J Psychiatry 160:13–23

    PubMed  Google Scholar 

  • Kay SR (1990) Significance of the positive-negative distinction in schizophrenia. Schizophr Bull 16:635–652

    PubMed  CAS  Google Scholar 

  • Keefe RS, Seidman LJ, Christensen BK, Hamer RM, Sharma T, Sitskoorn MM, Lewine RR, Yurgelun-Todd DA, Gur RC, Tohen M, Tollefson GD, Sanger TM, Lieberman JA (2004) Comparative effect of atypical and conventional antipsychotic drugs on neurocognition in first-episode psychosis: a randomized, double-blind trial of olanzapine versus low doses of haloperidol. Am J Psychiatry 161:985–995

    PubMed  Google Scholar 

  • Keefe RS, Bilder RM, Harvey PD, Davis SM, Palmer BW, Gold JM, Meltzer HY, Green MF, Miller del D, Canive JM, Adler LW, Manschreck TC, Swartz M, Rosenheck R, Perkins DO, Walker TM, Stroup TS, McEvoy JP, Lieberman JA (2006) Baseline neurocognitive deficits in the CATIE schizophrenia trial. Neuropsychopharmacology 31:2033–2046

    PubMed  Google Scholar 

  • Keefe RS, Malhotra AK, Meltzer HY, Kane JM, Buchanan RW, Murthy A, Sovel M, Chunming L, Goldman R (2008) Efficacy and safety of donepezil in patients with schizophrenia or schizoaffective disorder: significant placebo/practice effects in a 12-week, randomized, double-blind, placebo-controlled trial. Neuropsychopharmacology 33:1217–1228

    PubMed  CAS  Google Scholar 

  • King DJ (1990) The effect of neuroleptics on cognitive and psychomotor function. Br J Psychiatry 157:799–811

    PubMed  CAS  Google Scholar 

  • Koelega HS, Brinkman JA, Zwep B, Verbaten MN (1990) Dynamic vs static stimuli in their effect on visual vigilance performance. Percept Mot Skills 70:823–831

    PubMed  CAS  Google Scholar 

  • Kokkinidis L, Anisman H (1981) Amphetamine psychosis and schizophrenia: a dual model. Neurosci Biobehav Rev 5:449–461

    PubMed  CAS  Google Scholar 

  • Kondrad RL, Burk JA (2004) Transient disruption of attentional performance following escalating amphetamine administration in rats. Psychopharmacology 175:436–442

    PubMed  CAS  Google Scholar 

  • Kozak R, Bruno JP, Sarter M (2006) Augmented prefrontal acetylcholine release during challenged attentional performance. Cereb Cortex 16:9–17

    PubMed  Google Scholar 

  • Kozak R, Martinez V, Young D, Brown H, Bruno JP, Sarter M (2007) Toward a neuro-cognitive animal model of the cognitive symptoms of schizophrenia: disruption of cortical cholinergic neurotransmission following repeated amphetamine exposure in attentional task-performing, but not non-performing, rats. Neuropsychopharmacology 32:2074–2086

    PubMed  CAS  Google Scholar 

  • Kraepelin E (1907) Clinical psychiatry. Scholars’ facsimiles & reprints (1981 edition), Delmar

  • Kraepelin E (1919) Dementia praecox and paraphrenia (Facsimile 1971 Edition). Robert E. Krieger, Huntington

    Google Scholar 

  • Lai MK, Lai OF, Keene J, Esiri MM, Francis PT, Hope T, Chen CP (2001) Psychosis of Alzheimer’s disease is associated with elevated muscarinic M2 binding in the cortex. Neurology 57:805–811

    PubMed  CAS  Google Scholar 

  • Lameh J, Burstein ES, Taylor E, Weiner DM, Vanover KE, Bonhaus DW (2007) Pharmacology of N-desmethylclozapine. Pharmacol Ther 115:223–231

    PubMed  CAS  Google Scholar 

  • Laruelle M (2000) The role of endogenous sensitization in the pathophysiology of schizophrenia: implications from recent brain imaging studies. Brain Res Rev 31:371–384

    PubMed  CAS  Google Scholar 

  • Laruelle M, Abi-Dargham A (1999) Dopamine as the wind of the psychotic fire: new evidence from brain imaging studies. J Psychopharmacol 13:358–371

    PubMed  CAS  Google Scholar 

  • Laruelle M, Abi-Dargham A, Gil R, Kegeles L, Innis R (1999) Increased dopamine transmission in schizophrenia: relationship to illness phases. Biol Psychiatry 46:56–72

    PubMed  CAS  Google Scholar 

  • LeDuc PA, Mittleman G (1995) Schizophrenia and psychostimulant abuse: a review and re-analysis of clinical evidence. Psychopharmacology 121:407–427

    PubMed  CAS  Google Scholar 

  • Li Z, Huang M, Ichikawa J, Dai J, Meltzer HY (2005) N-desmethylclozapine, a major metabolite of clozapine, increases cortical acetylcholine and dopamine release in vivo via stimulation of M1 muscarinic receptors. Neuropsychopharmacology 30:1986–1995

    PubMed  CAS  Google Scholar 

  • Lieberman JA, Kinon BJ, Loebel AD (1990) Dopaminergic mechanisms in idiopathic and drug-induced psychoses. Schizophr Bull 16:97–110

    PubMed  CAS  Google Scholar 

  • Lieberman JA, Sheitman BB, Kinon BJ (1997) Neurochemical sensitization in the pathophysiology of schizophrenia: deficits and dysfunction in neuronal regulation and plasticity. Neuropsychopharmacology 17:205–229

    PubMed  CAS  Google Scholar 

  • Lieh-Mak F, Lee PW (1997) Cognitive deficit measures in schizophrenia: factor structure and clinical correlates. Am J Psychiatry 154:39–46

    PubMed  CAS  Google Scholar 

  • Luck SJ, Gold JM (2008) The construct of attention in schizophrenia. Biol Psychiatry 64:34–39

    PubMed  Google Scholar 

  • MacEwan GW, Ehmann TS, Khanbhai I, Wrixon C (2001) Donepezil in schizophrenia—is it helpful? An experimental design case study. Acta Psychiatr Scand 104:469–472

    PubMed  CAS  Google Scholar 

  • Mancama D, Arranz MJ, Landau S, Kerwin R (2003) Reduced expression of the muscarinic 1 receptor cortical subtype in schizophrenia. Am J Med Genet B Neuropsychiatr Genet 119:2–6

    Google Scholar 

  • Mar CM, Smith DA, Sarter M (1996) Behavioural vigilance in schizophrenia. Evidence for hyperattentional processing. Br J Psychiatry 169:781–789

    PubMed  CAS  Google Scholar 

  • Marder SR, Asarnow RF, Van Putten T (1984) Information processing and neuroleptic response in acute and stabilized schizophrenic patients. Psychiatry Res 13:41–49

    PubMed  CAS  Google Scholar 

  • Martinez V, Sarter M (2004) Lateralized attentional functions of cortical cholinergic inputs. Behav Neurosci 118:984–991

    PubMed  Google Scholar 

  • Martinez V, Sarter M (2008) Detection of the moderately beneficial cognitive effects of low-dose treatment with haloperidol or clozapine in an animal model of the attentional impairments of schizophrenia. Neuropsychopharmacology, in press

  • Martinez V, Parikh V, Sarter M (2005) Sensitized attentional performance and Fos-immunoreactive cholinergic neurons in the basal forebrain of amphetamine-pretreated rats. Biol Psychiatry 57:1138–1146

    PubMed  CAS  Google Scholar 

  • Maunsell JH (2004) Neuronal representations of cognitive state: reward or attention? Trends Cogn Sci 8:261–265

    PubMed  Google Scholar 

  • McGaughy J, Sarter M (1995) Behavioral vigilance in rats: task validation and effects of age, amphetamine, and benzodiazepine receptor ligands. Psychopharmacology 117:340–357

    PubMed  CAS  Google Scholar 

  • McGaughy J, Kaiser T, Sarter M (1996) Behavioral vigilance following infusions of 192 IgG-saporin into the basal forebrain: selectivity of the behavioral impairment and relation to cortical AChE-positive fiber density. Behav Neurosci 110:247–265

    PubMed  CAS  Google Scholar 

  • McGaughy J, Everitt BJ, Robbins TW, Sarter M (2000) The role of cortical cholinergic afferent projections in cognition: impact of new selective immunotoxins. Behav Brain Res 115:251–263

    PubMed  CAS  Google Scholar 

  • McGhie A, Chapman J (1961) Disorders of attention and perception in early schizophrenia. Brit J Med Psychol 34:103–117

    PubMed  CAS  Google Scholar 

  • McKenna TM, Ashe JH, Weinberger NM (1989) Cholinergic modulation of frequency receptive fields in auditory cortex: I. Frequency-specific effects of muscarinic agonists. Synapse 4:30–43

    PubMed  CAS  Google Scholar 

  • Miller GA (2003) The cognitive revolution: a historical perspective. Trends Cogn Sci 7:141–144

    PubMed  Google Scholar 

  • Minzenberg MJ, Poole JH, Benton C, Vinogradov S (2004) Association of anticholinergic load with impairment of complex attention and memory in schizophrenia. Am J Psychiatry 161:116–124

    PubMed  Google Scholar 

  • Mishara AL, Goldberg TE (2004) A meta-analysis and critical review of the effects of conventional neuroleptic treatment on cognition in schizophrenia: opening a closed book. Biol Psychiatry 55:1013–1022

    PubMed  CAS  Google Scholar 

  • Moore H, West AR, Grace AA (1999) The regulation of forebrain dopamine transmission: relevance to the pathophysiology and psychopathology of schizophrenia. Biol Psychiatry 46:40–55

    PubMed  CAS  Google Scholar 

  • Morel BA (1860) Traité des maladies mentales. Masson, Paris

    Google Scholar 

  • Morgan ME, Gibb JW (1980) Short-term and long-term effects of methamphetamine on biogenic amine metabolism in extra-striatal dopaminergic nuclei. Neuropharmacology 19:989–995

    PubMed  CAS  Google Scholar 

  • Mori S, Tanaka G, Ayaka Y, Michitsuji S, Niwa H, Uemura M, Ohta Y (1996) Preattentive and focal attentional processes in schizophrenia: a visual search study. Schizophr Res 22:69–76

    PubMed  CAS  Google Scholar 

  • Mortimer AM, Lund CE, McKenna PJ (1990) The positive:negative dichotomy in schizophrenia. Br J Psychiatry 157:41–49

    PubMed  CAS  Google Scholar 

  • Neigh GN, Arnold HM, Sarter M, Bruno JP (2001) Dissociations between the effects of intra-accumbens administration of amphetamine and exposure to a novel environment on accumbens dopamine and cortical acetylcholine release. Brain Res 894:354–358

    PubMed  CAS  Google Scholar 

  • Neigh GN, Arnold HM, Rabenstein RL, Sarter M, Bruno JP (2004) Neuronal activity in the nucleus accumbens is necessary for performance-related increases in cortical acetylcholine release. Neuroscience 123:635–645

    PubMed  CAS  Google Scholar 

  • Nelson CL, Sarter M, Bruno JP (2005) Prefrontal cortical modulation of acetylcholine release in posterior parietal cortex. Neuroscience 132:347–359

    PubMed  CAS  Google Scholar 

  • Newell KA, Zavitsanou K, Jew SK, Huang XF (2007) Alterations of muscarinic and GABA receptor binding in the posterior cingulate cortex in schizophrenia. Prog Neuropsychopharmacol Biol Psychiatry 31:225–233

    PubMed  CAS  Google Scholar 

  • Nobre AC, Sebestyen GN, Gitelman DR, Frith CD, Mesulam MM (2002) Filtering of distractors during visual search studied by positron emission tomography. Neuroimage 16:968–976

    PubMed  CAS  Google Scholar 

  • Nuechterlein KH, Dawson ME (1984) Information processing and attentional functioning in the developmental course of schizophrenic disorders. Schizophr Bull 10:160–203

    PubMed  CAS  Google Scholar 

  • Nuechterlein KH, Dawson ME, Green MF (1994) Information-processing abnormalities as neuropsychological vulnerability indicators for schizophrenia. Acta Psychiatr Scand (Suppl) 384:71–79

    CAS  Google Scholar 

  • O’Flanagan PM, Taylor RB (1950) A case of recurrent psychosis associated with amphetamine addiction. J Ment Sci 96:1033–1036

    PubMed  Google Scholar 

  • O’Neil ML, Kuczenski R, Segal DS, Cho AK, Lacan G, Melega WP (2006) Escalating dose pretreatment induces pharmacodynamic and not pharmacokinetic tolerance to a subsequent high-dose methamphetamine binge. Synapse 60:465–473

    PubMed  Google Scholar 

  • Oldford E, Castro-Alamancos MA (2003) Input-specific effects of acetylcholine on sensory and intracortical evoked responses in the “barrel cortex” in vivo. Neuroscience 117:769–778

    PubMed  CAS  Google Scholar 

  • Oltmanns TF (1978) Selective attention in schizophrenic and manic psychoses: the effect of distraction on information processing. J Abnorm Psychol 87:212–225

    PubMed  CAS  Google Scholar 

  • Oltmanns TF, Neale JM (1975) Schizophrenic performance when distractors are present: attentional deficit or differential task difficulty? J Abnorm Psychol 84:205–209

    PubMed  CAS  Google Scholar 

  • Oltmanns TF, Ohayon J, Neale JM (1978) The effect of anti-psychotic medication and diagnostic criteria on distractibility in schizophrenia. J Psychiatr Res 14:81–91

    PubMed  CAS  Google Scholar 

  • Parada MA, Hernandez L, Puig de Parada M, Rada P, Murzi E (1997) Selective action of acute systemic clozapine on acetylcholine release in the rat prefrontal cortex by reference to the nucleus accumbens and striatum. J Pharmacol Exp Ther 281:582–588

    PubMed  CAS  Google Scholar 

  • Parasuraman R, Mouloua M (1987) Interaction of signal discriminability and task type in vigilance decrement. Percept Psychophys 41:17–22

    PubMed  CAS  Google Scholar 

  • Pardo JV, Fox PT, Raichle ME (1991) Localization of a human system for sustained attention by positron emission tomography. Nature 349:61–64

    PubMed  CAS  Google Scholar 

  • Parikh V, Kozak R, Martinez V, Sarter M (2007) Prefrontal acetylcholine release controls cue detection on multiple timescales. Neuron 56:141–154

    PubMed  CAS  Google Scholar 

  • Parikh V, Man K, Decker MW, Sarter M (2008) Glutamatergic contributions to nAChR agonist-evoked cholinergic transients in the prefrontal cortex. J Neurosci 28:3769–3780

    PubMed  CAS  Google Scholar 

  • Passetti F, Dalley JW, O’Connell MT, Everitt BJ, Robbins TW (2000) Increased acetylcholine release in the rat medial prefrontal cortex during performance of a visual attentional task. Eur J Neurosci 12:3051–3058

    PubMed  CAS  Google Scholar 

  • Paulson PE, Robinson TE (1995) Amphetamine-induced time-dependent sensitization of dopamine neurotransmission in the dorsal and ventral striatum: a microdialysis study in behaving rats. Synapse 19:56–65

    PubMed  CAS  Google Scholar 

  • Paulson PE, Camp DM, Robinson TE (1991) Time course of transient behavioral depression and persistent behavioral sensitization in relation to regional brain monoamine concentrations during amphetamine withdrawal in rats. Psychopharmacology 103:480–492

    PubMed  CAS  Google Scholar 

  • Powchik P, Davidson M, Haroutunian V, Gabriel SM, Purohit DP, Perl DP, Harvey PD, Davis KL (1998) Postmortem studies in schizophrenia. Schizophr Bull 24:325–341

    PubMed  CAS  Google Scholar 

  • Puckett AC, Pandya PK, Moucha R, Dai W, Kilgard MP (2007) Plasticity in the rat posterior auditory field following nucleus basalis stimulation. J Neurophysiol 98:253–265

    PubMed  Google Scholar 

  • Raedler TJ, Knable MB, Jones DW, Lafargue T, Urbina RA, Egan MF, Pickar D, Weinberger DR (2000) In vivo olanzapine occupancy of muscarinic acetylcholine receptors in patients with schizophrenia. Neuropsychopharmacology 23:56–68

    PubMed  CAS  Google Scholar 

  • Raedler TJ, Knable MB, Jones DW, Urbina RA, Gorey JG, Lee KS, Egan MF, Coppola R, Weinberger DR (2003) In vivo determination of muscarinic acetylcholine receptor availability in schizophrenia. Am J Psychiatry 160:118–127

    PubMed  Google Scholar 

  • Raedler TJ, Bymaster FP, Tandon R, Copolov D, Dean B (2007) Towards a muscarinic hypothesis of schizophrenia. Mol Psychiatry 12:232–246

    PubMed  CAS  Google Scholar 

  • Remington G, Kapur S (2005) Remission: what’s in a name? Am J Psychiatry 162:2393–2394

    PubMed  Google Scholar 

  • Richards JB, Baggott MJ, Sabol KE, Seiden LS (1993) A high-dose methamphetamine regimen results in long-lasting deficits on performance of a reaction-time task. Brain Res 627:254–260

    PubMed  CAS  Google Scholar 

  • Ridley RM, Baker HF, Owen F, Cross AJ, Crow TJ (1982) Behavioural and biochemical effects of chronic amphetamine treatment in the vervet monkey. Psychopharmacology 78:245–251

    PubMed  CAS  Google Scholar 

  • Robert PH, Migneco V, Chaix I, Berthet L, Kazes M, Danion JM, Baudu C, Darcourt G (1997) Use of a sequencing task designed to stress the supervisory system in schizophrenic subjects. Psychol Med 27:1287–1294

    PubMed  CAS  Google Scholar 

  • Robinson TE, Becker JB (1986) Enduring changes in brain and behavior produced by chronic amphetamine administration: a review and evaluation of animal models of amphetamine psychosis. Brain Res 396:157–198

    PubMed  CAS  Google Scholar 

  • Robinson TE, Camp DM (1987) Long-lasting effects of escalating doses of d-amphetamine on brain monoamines, amphetamine-induced stereotyped behavior and spontaneous nocturnal locomotion. Pharmacol Biochem Behav 26:821–827

    PubMed  CAS  Google Scholar 

  • Robinson TE, Jurson PA, Bennett JA, Bentgen KM (1988) Persistent sensitization of dopamine neurotransmission in ventral striatum (nucleus accumbens) produced by prior experience with (+)-amphetamine: a microdialysis study in freely moving rats. Brain Res 462:211–222

    PubMed  CAS  Google Scholar 

  • Russig H, Durrer A, Yee BK, Murphy CA, Feldon J (2003) The acquisition, retention and reversal of spatial learning in the morris water maze task following withdrawal from an escalating dosage schedule of amphetamine in wistar rats. Neuroscience 119:167–179

    PubMed  CAS  Google Scholar 

  • Sarter M (1990) Retrieval of well-learned propositional rules: insensitive to changes in activity of individual neurotransmitter systems? Psychobiology 18:451–459

    Google Scholar 

  • Sarter M, Bruno JP (1999) Abnormal regulation of corticopetal cholinergic neurons and impaired information processing in neuropsychiatric disorders. Trends Neurosci 22:67–74

    PubMed  CAS  Google Scholar 

  • Sarter M, Givens B, Bruno JP (2001) The cognitive neuroscience of sustained attention: where top-down meets bottom-up. Brain Res Rev 35:146–160

    PubMed  CAS  Google Scholar 

  • Sarter M, Hasselmo ME, Bruno JP, Givens B (2005a) Unraveling the attentional functions of cortical cholinergic inputs: interactions between signal-driven and cognitive modulation of signal detection. Brain Res Rev 48:98–111

    PubMed  CAS  Google Scholar 

  • Sarter M, Nelson CL, Bruno JP (2005b) Cortical cholinergic transmission and cortical information processing following psychostimulant-sensitization: implications for models of schizophrenia. Schizophren Bull 31:117–138

    Google Scholar 

  • Sarter M, Gehring WJ, Kozak R (2006) More attention must be paid: the neurobiology of attentional effort. Brain Res Rev 51:145–160

    PubMed  Google Scholar 

  • Sarter M, Bruno JP, Parikh V (2007) Abnormal neurotransmitter release underlying behavioral and cognitive disorders: toward concepts of dynamic and function-specific dysregulation. Neuropsychopharmacology 32:1452–1461

    PubMed  CAS  Google Scholar 

  • Scarr E, Cowie TF, Kanellakis S, Sundram S, Pantelis C, Dean B (2008) Decreased cortical muscarinic receptors define a subgroup of subjects with schizophrenia. Mol Psychiatry, in press

  • Segal DS, Janowski DS (1978) Psychostimulant-induced behavioral effects: possible models of schizophrenia. In: Lipton MA, DiMascio A, Killam KF (eds) Psychopharmacology: a generation of progress. Raven, New York, pp 1113–1124

    Google Scholar 

  • Segal DS, Kuczenski R (1997) An escalating dose “binge” model of amphetamine psychosis: behavioral and neurochemical characteristics. J Neurosci 17:2551–2566

    PubMed  CAS  Google Scholar 

  • Segal DS, Mandell AJ (1974) Long-term administration of d-amphetamine: progressive augmentation of motor activity and stereotypy. Pharmacol Biochem Behav 2:249–255

    PubMed  CAS  Google Scholar 

  • Segal DS, Geyer MA, Schuckit MA (1981) Stimulant-induced psychosis: an evaluation of animal models. In: Youdim MBH, Lovenberg W, Sharman DF, Lagnado JR (eds) Essays in neurochemistry and neuropharmacology. Wiley, New York, pp 95–129

    Google Scholar 

  • Seidman LJ, Van Manen KJ, Turner WM, Gamser DM, Faraone SV, Goldstein JM, Tsuang MT (1998) The effects of increasing resource demand on vigilance performance in adults with schizophrenia or developmental attentional/learning disorders: a preliminary study. Schizophr Res 34:101–112

    PubMed  CAS  Google Scholar 

  • Servan–Schreiber D, Cohen JD, Steingard S (1996) Schizophrenic deficits in the processing of context. A test of a theoretical model. Arch Gen Psychiatry 53:1105–1112

    PubMed  Google Scholar 

  • Silver H, Feldman P (2005) Evidence for sustained attention and working memory in schizophrenia sharing a common mechanism. J Neuropsychiatry Clin Neurosci 17:391–398

    PubMed  Google Scholar 

  • Small DM, Gitelman D, Simmons K, Bloise SM, Parrish T, Mesulam MM (2005) Monetary incentives enhance processing in brain regions mediating top-down control of attention. Cereb Cortex 15:1855–1865

    PubMed  Google Scholar 

  • Smith GL, Large MM, Kavanagh DJ, Karayanidis F, Barrett NA, Michie PT, O’Sullivan BT (1998) Further evidence for a deficit in switching attention in schizophrenia. J Abnorm Psychol 107:390–398

    PubMed  CAS  Google Scholar 

  • Snyder SH (1973) Amphetamine psychosis: a “model” schizophrenia mediated by catecholamines. Am J Psychiatry 130:61–67

    PubMed  CAS  Google Scholar 

  • Snyder SH, Aghajanian GK, Matthysse S (1972) Prospects for research on schizophrenia. V. Pharmacological observations, drug-induced psychoses. Neurosci Res Program Bull 10:430–445

    PubMed  CAS  Google Scholar 

  • Strakowski SM, Sax KW, Setters MJ, Stanton SP, Keck PE Jr (1997) Lack of enhanced response to repeated d-amphetamine challenge in first-episode psychosis: implications for a sensitization model of psychosis in humans. Biol Psychiatry 42:749–755

    PubMed  CAS  Google Scholar 

  • Strauss ME (1993) Relations of symptoms to cognitive deficits in schizophrenia. Schizophr Bull 19:215–231

    PubMed  CAS  Google Scholar 

  • Tenn CC, Fletcher PJ, Kapur S (2003) Amphetamine-sensitized animals show a sensorimotor gating and neurochemical abnormality similar to that of schizophrenia. Schizophr Res 64:103–114

    PubMed  Google Scholar 

  • Venables PH (1964) Input dysfunction in schizophrenia. In: Maher BA (ed) Progress in experimental personality research. Academic, New York, pp 1–47

    Google Scholar 

  • Wahba M, Donlon PT, Meadow A (1981) Cognitive changes in acute schizophrenia with brief neuroleptic treatment. Am J Psychiatry 138:1307–1310

    PubMed  CAS  Google Scholar 

  • Wallace TL, Gudelsky GA, Vorhees CV (2001) Neurotoxic regimen of methamphetamine produces evidence of behavioral sensitization in the rat. Synapse 39:1–7

    PubMed  CAS  Google Scholar 

  • Wallis GG, Mc HJ, Scott OC (1949) Acute psychosis caused by dextro-amphetamine. Br Med J 2:1394

    Article  PubMed  CAS  Google Scholar 

  • Watanabe M (2007) Role of anticipated reward in cognitive behavioral control. Curr Opin Neurobiol 17:213–219

    PubMed  CAS  Google Scholar 

  • Weese GD, Phillips JM, Brown VJ (1999) Attentional orienting is impaired by unilateral lesions of the thalamic reticular nucleus in the rat. J Neurosci 19:10135–10139

    PubMed  CAS  Google Scholar 

  • Weiner IB (1964) Differential diagnosis in amphetamine psychosis. Psychiatr Quart 38:707–716

    CAS  Google Scholar 

  • Weiner DM, Meltzer HY, Veinbergs I, Donohue EM, Spalding TA, Smith TT, Mohell N, Harvey SC, Lameh J, Nash N, Vanover KE, Olsson R, Jayathilake K, Lee M, Levey AI, Hacksell U, Burstein ES, Davis RE, Brann MR (2004) The role of M1 muscarinic receptor agonism of N-desmethylclozapine in the unique clinical effects of clozapine. Psychopharmacology 177:207–216

    PubMed  CAS  Google Scholar 

  • Weissman DH, Mangun GR, Woldorff MG (2002) A role for top-down attentional orienting during interference between global and local aspects of hierarchical stimuli. Neuroimage 17:1266–1276

    PubMed  CAS  Google Scholar 

  • Wolgin DL (2002) Effects of chronic amphetamine on the appetitive and consummatory phases of feeding. Appetite 38:221–223

    PubMed  CAS  Google Scholar 

  • Wolgin DL, Jakubow JJ (2004) Tolerance to amphetamine hypophagia: a real-time depiction of learning to suppress stereotyped movements in the rat. Behav Neurosci 118:470–478

    PubMed  Google Scholar 

  • Young D, Martinez V, Bruno JP, Sarter M (2007) Neuronal mechanisms underlying the cognitive symptoms in a model of schizophrenia: prefrontal cholinergic inputs are necessary for attentional performance following repeated exposure to amphetamine. Soc Neurosci Abs #606.9

  • Yui K, Ishiguro T, Goto K, Ikemoto S (1997) Precipitating factors in spontaneous recurrence of methamphetamine psychosis. Psychopharmacology 134:303–308

    PubMed  CAS  Google Scholar 

  • Yui K, Goto K, Ikemoto S, Ishiguro T, Angrist B, Duncan GE, Sheitman BB, Lieberman JA, Bracha SH, Ali SF (1999) Neurobiological basis of relapse prediction in stimulant-induced psychosis and schizophrenia: the role of sensitization. Mol Psychiatry 4:512–523

    PubMed  CAS  Google Scholar 

  • Yui K, Goto K, Ikemoto S, Ishiguro T (2000) Stress induced spontaneous recurrence of methamphetamine psychosis: the relation between stressful experiences and sensitivity to stress. Drug Alcohol Depend 58:67–75

    PubMed  CAS  Google Scholar 

  • Zaborszky L, Gaykema RP, Swanson DJ, Cullinan WE (1997) Cortical input to the basal forebrain. Neuroscience 79:1051–1078

    PubMed  CAS  Google Scholar 

  • Zmarowski A, Sarter M, Bruno JP (2005) NMDA and dopamine interactions in the nucleus accumbens modulate cortical acetylcholine release. Eur J Neurosci 22:1731–1740

    PubMed  Google Scholar 

  • Zmarowski A, Sarter M, Bruno JP (2007) Glutamate receptors in nucleus accumbens mediate regionally selective increases in cortical acetylcholine release. Synapse 61:115–123

    PubMed  CAS  Google Scholar 

Download references

Acknowledgments

The authors’ research that is reviewed in this paper was supported by PHS Grants MH063114, NS37026, MH080426, MH073600, and KO2 MH01072. Vicente Martinez is now at the University of Washington, Dept. of Psychiatry and Behavioral Sciences.

Disclosure of biomedical financial interests and potential conflicts of interests

Dr. Martin Sarter has received honoraria for speaking at Abbott Laboratories and Pfizer, Inc. He conducted a research that has been supported by grants from Abbott Laboratories and Pfizer Pharmaceuticals and served as a consultant for Sonexa Therapeutics Inc. in 2007.

Dr. Vicente Martinez indicated that he has no conflict of interest.

Dr. Rouba Kozak is employed by Pfizer, Inc.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Martin Sarter.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Sarter, M., Martinez, V. & Kozak, R. A neurocognitive animal model dissociating between acute illness and remission periods of schizophrenia. Psychopharmacology 202, 237–258 (2009). https://doi.org/10.1007/s00213-008-1216-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00213-008-1216-6

Keywords

Navigation