Skip to main content
Log in

Investigation of the anticonvulsive effect of acute immobilization stress in anxious Balb/cByJ mice using GABAA-related mechanistic probes

  • Original Investigation
  • Published:
Psychopharmacology Aims and scope Submit manuscript

Abstract

Rationale

A disordered regulation of neuroactive steroids release in response to acute stress could induce GABAergic dysfunctions underlying anxiety disorders.

Objectives

First, we conducted studies indicating that a short immobilization stress in anxious Balb/cByJ mice produced an anticonvulsive effect. Second, the effects of different positive allosteric modulators (etifoxine, progesterone, clonazepam, and allopregnanolone) of GABAA receptors were compared in a mouse model mimicking the disruption of the acute stress-induced neuroactive steroids release with finasteride (types I and II 5α-reductase inhibitor).

Results

The acute stress-induced anticonvulsive effect, expressed by the threshold dose of t-butylbicyclophosphorothionate-producing clonic seizures, was time-dependent. The extent of the enhancement of acute stress-induced anticonvulsive effect was lowered in the presence of finasteride. The same effect was observed with PK11195, which behaves as an antagonist of the peripheral benzodiazepine receptor in the dose range used in this study. Picrotoxin reduced the acute stress anticonvulsive effect, proving that this effect operates through the GABAA receptor. Contrary to progesterone (up to 30 mg/kg), etifoxine (50 mg/kg), allopregnanolone (10 mg/kg), and clonazepam (10 μg/kg) inhibited the finasteride effect in stressed animals. The effect of etifoxine was blocked in the presence of finasteride and picrotoxin combined in stressed animals.

Conclusions

These findings support the hypothesis suggesting an involvement of neuroactive steroids in the anticonvulsive effect of restraint stress. The dual and complementary mechanisms of action of etifoxine (directly on the GABAA receptor and indirectly via the neuroactive steroids) may represent a therapeutic benefit in the treatment of various anxiety disorders with abnormal production of neuroactive steroids.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  • Abel EL, Berman RF (1993) Effects of water immersion stress on convulsions induced by pentylenetetrazol. Pharmacol Biochem Behav 45:823–825

    Article  PubMed  CAS  Google Scholar 

  • Anholt RR, Pedersen PL, De Souza EB, Snyder SH (1986) The peripheral-type benzodiazepine receptor. Localization to the mitochondrial outer membrane. J Biol Chem 261:576–583

    PubMed  CAS  Google Scholar 

  • Azzolina B, Ellsworth K, Andersson S, Geissler W, Bull HG, Harris GS (1997) Inhibition of rat alpha-reductases by finasteride: evidence for isozyme differences in the mechanism of inhibition. J Steroid Biochem Mol Biol 61:55–64

    Article  PubMed  CAS  Google Scholar 

  • Barbaccia ML, Roscetti G, Trabucchi M, Mostallino MC, Concas A, Purdy RH, Biggio G (1996) Time-dependent changes in rat brain neuroactive steroid concentrations and GABA(A) receptor function after acute stress. Neuroendocrinology 63:166–172

    PubMed  CAS  Google Scholar 

  • Barbaccia ML, Roscetti G, Trabucchi M, Purdy RH, Mostallino MC, Concas A, Biggio G (1997) The effects of inhibitors of GABAergic transmission and stress on brain and plasma allopregnanolone concentrations. Br J Pharmacol 120:1582–1588

    Article  PubMed  CAS  Google Scholar 

  • Barbaccia ML, Concas A, Serra M, Biggio G (1998) Stress and neurosteroids in adult and aged rats. Exp Gerontol 33:697–712

    Article  PubMed  CAS  Google Scholar 

  • Barbaccia ML, Serra M, Purdy RH, Biggio G (2001) Stress and neuroactive steroids. Int Rev Neurobiol 46:243–272

    PubMed  CAS  Google Scholar 

  • Belelli D, Lambert JJ (2005) Neurosteroids: endogenous regulators of the GABA(A) receptor. Nat Rev Neurosci 6:565–575

    Article  PubMed  CAS  Google Scholar 

  • Benavides J, Guilloux F, Allam DE, Uzan A, Mizoule J, Renault C, Dubroeucq MC, Gueremy C, Le Fur G (1984) Opposite effects of an agonist, RO5-4864, and an antagonist, PK 11195, of the peripheral type benzodiazepine binding sites on audiogenic seizures in DBA/2J mice. Life Sci 34:2613–2620

    Article  PubMed  CAS  Google Scholar 

  • Biggio G, Corda MG, Concas A, Demontis G, Rossetti Z, Gessa GL (1981) Rapid changes in GABA binding induced by stress in different areas of the rat brain. Brain Res 229:363–369

    Article  PubMed  CAS  Google Scholar 

  • Biggio G, Concas A, Mele S, Corda MG (1987) Changes in GABAergic transmission induced by stress, anxiogenic and anxiolytic beta-carbolines. Brain Res Bull 19:301–308

    Article  PubMed  CAS  Google Scholar 

  • Bitran D, Purdy RH, Kellogg CK (1993) Anxiolytic effect of progesterone is associated with increases in cortical allopregnanolone and GABA(A) receptor function. Pharmacol Biochem Behav 45:423–428

    Article  PubMed  CAS  Google Scholar 

  • Bitran D, Shiekh M, McLeod M (1995) Anxiolytic effect of progesterone is mediated by the neurosteroid allopregnanolone at brain GABA(A) receptors. J Neuroendocrinol 7:171–177

    Article  PubMed  CAS  Google Scholar 

  • Bitran D, Carlson D, Leschiner S, Gavish M (1998) Ovarian steroids and stress produce changes in peripheral benzodiazepine receptor density. Eur J Pharmacol 361:235–242

    Article  PubMed  CAS  Google Scholar 

  • Brambilla F, Biggio G, Pisu MG, Bellodi L, Perna G, Bogdanovich-Djukic V, Purdy RH, Serra M (2003a) Neurosteroid secretion in panic disorder. Psychiatry Res 118:107–116

    Article  PubMed  CAS  Google Scholar 

  • Brambilla P, Perez J, Barale F, Schettini G, Soares JC (2003b) GABAergic dysfunction in mood disorders. Mol Psychiatry 8:721–737 715

    Article  PubMed  CAS  Google Scholar 

  • Cavallaro S, Korneyev A, Guidotti A, Costa E (1992) Diazepam-binding inhibitor (DBI)-processing products, acting at the mitochondrial DBI receptor, mediate adrenocorticotropic hormone-induced steroidogenesis in rat adrenal gland. Proc Natl Acad Sci U S A 89:10598–10602

    Article  PubMed  CAS  Google Scholar 

  • Chittajallu R, Braithwaite SP, Clarke VR, Henley JM (1999) Kainate receptors: subunits, synaptic localization and function. Trends Pharmacol Sci 20:26–35

    Article  PubMed  CAS  Google Scholar 

  • Concas A, Corda MG, Biggio G (1985) Involvement of benzodiazepine recognition sites in the foot shock-induced decrease of low affinity GABA receptors in the rat cerebral cortex. Brain Res 341:50–56

    Article  PubMed  CAS  Google Scholar 

  • Concas A, Serra M, Atsoggiu T, Biggio G (1988) Foot-shock stress and anxiogenic beta-carbolines increase t-[35S]butylbicyclophosphorothionate binding in the rat cerebral cortex, an effect opposite to anxiolytics and gamma-aminobutyric acid mimetics. J Neurochem 51:1868–1876

    Article  PubMed  CAS  Google Scholar 

  • Concas A, Mostallino MC, Porcu P, Follesa P, Barbaccia ML, Trabucchi M, Purdy RH, Grisenti P, Biggio G (1998) Role of brain allopregnanolone in the plasticity of gamma-aminobutyric acid type A receptor in rat brain during pregnancy and after delivery. Proc Natl Acad Sci U S A 95:13284–13289

    Article  PubMed  CAS  Google Scholar 

  • Costa E, Guidotti A (1991) Diazepam binding inhibitor (DBI): a peptide with multiple biological actions. Life Sci 49:325–344

    Article  PubMed  CAS  Google Scholar 

  • Crawley JN, Davis LG (1982) Baseline exploratory activity predicts anxiolytic responsiveness to diazepam in five mouse strains. Brain Res Bull 8:609–612

    Article  PubMed  CAS  Google Scholar 

  • Droogleever Fortuyn HA, van Broekhoven F, Span PN, Backstrom T, Zitman FG, Verkes RJ (2004) Effects of PhD examination stress on allopregnanolone and cortisol plasma levels and peripheral benzodiazepine receptor density. Psychoneuroendocrinology 29:1341–1344

    Article  PubMed  CAS  Google Scholar 

  • Drugan RC, Basile AS, Ha JH, Ferland RJ (1994) The protective effects of stress control may be mediated by increased brain levels of benzodiazepine receptor agonists. Brain Res 661:127–136

    Article  PubMed  CAS  Google Scholar 

  • Eser D, Schule C, Baghai TC, Romeo E, Uzunov DP, Rupprecht R (2006) Neuroactive steroids and affective disorders. Pharmacol Biochem Behav 84:656–666

    Article  PubMed  CAS  Google Scholar 

  • Ferrarese C, Mennini T, Pecora N, Pierpaoli C, Frigo M, Marzorati C, Gobbi M, Bizzi A, Codegoni A, Garattini S (1991) Diazepam binding inhibitor (DBI) increases after acute stress in rat. Neuropharmacology 30:1445–1452

    Article  PubMed  CAS  Google Scholar 

  • Girdler SS, Klatzkin R (2007) Neurosteroids in the context of stress: implications for depressive disorders. Pharmacol Ther 116:125–139

    Article  PubMed  CAS  Google Scholar 

  • Hackler EA, Airey DC, Shannon CC, Sodhi MS, Sanders-Bush E (2006) 5-HT(2C) receptor RNA editing in the amygdala of C57BL/6J, DBA/2J, and BALB/cJ mice. Neurosci Res 55:96–104

    Article  PubMed  CAS  Google Scholar 

  • Hode Y, Ratomponirina C, Gobaille S, Maitre M, Kopp C, Misslin R (2000) Hypoexpression of benzodiazepine receptors in the amygdala of neophobic BALB/c mice compared to C57BL/6 mice. Pharmacol Biochem Behav 65:35–38

    Article  PubMed  CAS  Google Scholar 

  • Hosie AM, Wilkins ME, Smart TG (2007) Neurosteroid binding sites on GABA(A) receptors. Pharmacol Ther 116:7–19

    Article  PubMed  CAS  Google Scholar 

  • Katsura M, Mohri Y, Shuto K, Tsujimura A, Ukai M, Ohkuma S (2002) Psychological stress, but not physical stress, causes increase in diazepam binding inhibitor (DBI) mRNA expression in mouse brains. Mol Brain Res 104:103–109

    Article  PubMed  CAS  Google Scholar 

  • Kim S, Lee S, Ryu S, Suk J, Park C (2002) Comparative analysis of the anxiety-related behaviors in four inbred mice. Behav Processes 60:181–190

    Article  PubMed  Google Scholar 

  • Kita A, Kohayakawa H, Kinoshita T, Ochi Y, Nakamichi K, Kurumiya S, Furukawa K, Oka M (2004) Antianxiety and antidepressant-like effects of AC-5216, a novel mitochondrial benzodiazepine receptor ligand. Br J Pharmacol 142:1059–1072

    Article  PubMed  CAS  Google Scholar 

  • Kokate TG, Banks MK, Magee T, Yamaguchi S, Rogawski MA (1999) Finasteride, a 5alpha-reductase inhibitor, blocks the anticonvulsant activity of progesterone in mice. J Pharmacol Exp Ther 288:679–684

    PubMed  CAS  Google Scholar 

  • Korneyev A, Pan BS, Polo A, Romeo E, Guidotti A, Costa E (1993) Stimulation of brain pregnenolone synthesis by mitochondrial diazepam binding inhibitor receptor ligands in vivo. J Neurochem 61:1515–1524

    Article  PubMed  CAS  Google Scholar 

  • Korpi ER, Sinkkonen ST (2006) GABA(A) receptor subtypes as targets for neuropsychiatric drug development. Pharmacol Ther 109:12–32

    Article  PubMed  CAS  Google Scholar 

  • Krueger KE, Papadopoulos V (1990) Peripheral-type benzodiazepine receptors mediate translocation of cholesterol from outer to inner mitochondrial membranes in adrenocortical cells. J Biol Chem 265:15015–15022

    PubMed  CAS  Google Scholar 

  • Krueger KE, Papadopoulos V (1992) Mitochondrial benzodiazepine receptors and the regulation of steroid biosynthesis. Annu Rev Pharmacol Toxicol 32:211–237

    Article  PubMed  CAS  Google Scholar 

  • Le Fur G, Guilloux F, Rufat P, Benavides J, Uzan A, Renault C, Dubroeucq MC, Gueremy C (1983) Peripheral benzodiazepine binding sites: effect of PK 11195, 1-(2-chlorophenyl)-N-methyl-(1-methylpropyl)-3 isoquinolinecarboxamide. II. In vivo studies. Life Sci 32:1849–1856

    Article  PubMed  Google Scholar 

  • Lehmann J, Weizman R, Pryce CR, Leschiner S, Allmann I, Feldon J, Gavish M (1999) Peripheral benzodiazepine receptors in cerebral cortex, but not in internal organs, are increased following inescapable stress and subsequent avoidance/escape shuttle-box testing. Brain Res 851:141–147

    Article  PubMed  CAS  Google Scholar 

  • Lephart ED, Ladle DR, Jacobson NA, Rhees RW (1996) Inhibition of brain 5 alpha-reductase in pregnant rats: effects on enzymatic and behavioral activity. Brain Res 739:356–360

    Article  PubMed  CAS  Google Scholar 

  • Li H, Papadopoulos V (1998) Peripheral-type benzodiazepine receptor function in cholesterol transport. Identification of a putative cholesterol recognition/interaction amino acid sequence and consensus pattern. Endocrinology 139:4991–4997

    Article  PubMed  CAS  Google Scholar 

  • Majewska MD, Harrison NL, Schwartz RD, Barker JL, Paul SM (1986) Steroid hormone metabolites are barbiturate-like modulators of the GABA receptor. Science 232:1004–1007

    Article  PubMed  CAS  Google Scholar 

  • Mele P, Oberto A, Serra M, Pisu MG, Floris I, Biggio G, Eva C (2004) Increased expression of the gene for the Y1 receptor of neuropeptide Y in the amygdala and paraventricular nucleus of Y1R/LacZ transgenic mice in response to restraint stress. J Neurochem 89:1471–1478

    Article  PubMed  CAS  Google Scholar 

  • Miller LG, Thompson ML, Greenblatt DJ, Deutsch SI, Shader RI, Paul SM (1987) Rapid increase in brain benzodiazepine receptor binding following defeat stress in mice. Brain Res 414:395–400

    Article  PubMed  CAS  Google Scholar 

  • Mizoule J, Gauthier A, Uzan A, Renault C, Dubroeucq MC, Gueremy C, Le Fur G (1985) Opposite effects of two ligands for peripheral type benzodiazepine binding sites, PK 11195 and RO5-4864, in a conflict situation in the rat. Life Sci 36:1059–1068

    Article  PubMed  CAS  Google Scholar 

  • Nguyen N, Fakra E, Pradel V, Jouve E, Alquier C, Le Guern ME, Micallef J, Blin O (2006) Efficacy of etifoxine compared to lorazepam monotherapy in the treatment of patients with adjustment disorders with anxiety: a double-blind controlled study in general practice. Hum Psychopharmacol 21:139–149

    Article  PubMed  CAS  Google Scholar 

  • Olsen RW (1982) Drug interactions at the GABA receptor-ionophore complex. Annu Rev Pharmacol Toxicol 22:245–277

    Article  PubMed  CAS  Google Scholar 

  • Papadopoulos V, Baraldi M, Guilarte TR, Knudsen TB, Lacapere JJ, Lindemann P, Norenberg MD, Nutt D, Weizman A, Zhang MR, Gavish M (2006) Translocator protein (18kDa): new nomenclature for the peripheral-type benzodiazepine receptor based on its structure and molecular function. Trends Pharmacol Sci 27:402–409

    Article  PubMed  CAS  Google Scholar 

  • Park CH, Carboni E, Wood PL, Gee KW (1996) Characterization of peripheral benzodiazepine type sites in a cultured murine BV-2 microglial cell line. Glia 16:65–70

    Article  PubMed  CAS  Google Scholar 

  • Pericic D, Svob D, Jazvinscak M, Mirkovic K (2000) Anticonvulsive effect of swim stress in mice. Pharmacol Biochem Behav 66:879–886

    Article  PubMed  CAS  Google Scholar 

  • Pinna G, Costa E, Guidotti A (2006) Fluoxetine and norfluoxetine stereospecifically and selectively increase brain neurosteroid content at doses that are inactive on 5-HT reuptake. Psychopharmacology (Berl) 186:362–372

    Article  CAS  Google Scholar 

  • Pokk P, Kivastik T, Sobol D, Liljequist S, Zharkovsky A (1996) Is upregulation of benzodiazepine receptors a compensatory reaction to reduced GABAergic tone in the brain of stressed mice? Naunyn-Schmiedeberg’s Arch Pharmacol 354:703–708

    Article  CAS  Google Scholar 

  • Priebe K, Brake WG, Romeo RD, Sisti HM, Mueller A, McEwen BS, Francis DD (2005) Maternal influences on adult stress and anxiety-like behavior in C57BL/6J and BALB/cJ mice: a cross-fostering study. Dev Psychobiol 47:398–407

    Article  PubMed  CAS  Google Scholar 

  • Purdy RH, Morrow AL, Moore PH Jr., Paul SM (1991) Stress-induced elevations of gamma-aminobutyric acid type A receptor-active steroids in the rat brain. Proc Natl Acad Sci U S A 88:4553–4557

    Article  PubMed  CAS  Google Scholar 

  • Purdy RH, Moore PH Jr., Morrow AL, Paul SM (1992) Neurosteroids and GABA(A) receptor function. Adv Biochem Psychopharmacol 47:87–92

    PubMed  CAS  Google Scholar 

  • Qian A, Johnson JW (2002) Channel gating of NMDA receptors. Physiol Behav 77:577–582

    Article  PubMed  CAS  Google Scholar 

  • Rajendra S, Lynch JW, Schofield PR (1997) The glycine receptor. Pharmacol Ther 73:121–146

    Article  PubMed  CAS  Google Scholar 

  • Reddy DS, Rogawski MA (2002) Stress-induced deoxycorticosterone-derived neurosteroids modulate GABA(A) receptor function and seizure susceptibility. J Neurosci 22:3795–3805

    PubMed  CAS  Google Scholar 

  • Reddy DS, O’Malley BW, Rogawski MA (2005) Anxiolytic activity of progesterone in progesterone receptor knockout mice. Neuropharmacology 48:14–24

    Article  PubMed  CAS  Google Scholar 

  • Rhodes ME, Frye CA (2001) Inhibiting progesterone metabolism in the hippocampus of rats in behavioral estrus decreases anxiolytic behaviors and enhances exploratory and antinociceptive behaviors. Cogn Affect Behav Neurosci 1:287–296

    PubMed  CAS  Google Scholar 

  • Robertson HA (1979) Benzodiazepine receptors in “emotional” and “non-emotional” mice; comparison of four strains. Eur J Pharmacol 56:163–166

    Article  PubMed  CAS  Google Scholar 

  • Romeo E, Auta J, Kozikowski AP, Ma D, Papadopoulos V, Puia G, Costa E, Guidotti A (1992) 2-Aryl-3-indoleacetamides (FGIN-1): a new class of potent and specific ligands for the mitochondrial DBI receptor (MDR). J Pharmacol Exp Ther 262:971–978

    PubMed  CAS  Google Scholar 

  • Romeo E, Cavallaro S, Korneyev A, Kozikowski AP, Ma D, Polo A, Costa E, Guidotti A (1993) Stimulation of brain steroidogenesis by 2-aryl-indole-3-acetamide derivatives acting at the mitochondrial diazepam-binding inhibitor receptor complex. J Pharmacol Exp Ther 267:462–471

    PubMed  CAS  Google Scholar 

  • Schlichter R, Rybalchenko V, Poisbeau P, Verleye M, Gillardin J (2000) Modulation of GABAergic synaptic transmission by the non-benzodiazepine anxiolytic etifoxine. Neuropharmacology 39:1523–1535

    Article  PubMed  CAS  Google Scholar 

  • Schwartz RD, Wess MJ, Labarca R, Skolnick P, Paul SM (1987) Acute stress enhances the activity of the GABA receptor-gated chloride ion channel in brain. Brain Res 411:151–155

    Article  PubMed  CAS  Google Scholar 

  • Servant D, Graziani PL, Moyse D, Parquet PJ (1998) Treatment of adjustment disorder with anxiety: efficacy and tolerance of etifoxine in a double-blind controlled study. Encephale 24:569–574

    PubMed  CAS  Google Scholar 

  • Sieghart W (2006) Structure, pharmacology, and function of GABA(A) receptor subtypes. Adv Pharmacol 54:231–263

    Article  PubMed  CAS  Google Scholar 

  • Skerritt JH, Trisdikoon P, Johnston GA (1981) Increased GABA binding in mouse brain following acute swim stress. Brain Res 215:398–403

    Article  PubMed  CAS  Google Scholar 

  • Soubrie P, Thiebot MH, Jobert A, Montastruc JL, Hery F, Hamon M (1980) Decreased convulsant potency of picrotoxin and pentetrazol and enhanced [3H]flunitrazepam cortical binding following stressful manipulations in rats. Brain Res 189:505–517

    Article  PubMed  CAS  Google Scholar 

  • Squires RF, Casida JE, Richardson M, Saederup E (1983) [35S]t-butylbicyclophosphorothionate binds with high affinity to brain-specific sites coupled to gamma-aminobutyric acid-A and ion recognition sites. Mol Pharmacol 23:326–336

    PubMed  CAS  Google Scholar 

  • Stromberg J, Backstrom T, Lundgren P (2005) Rapid non-genomic effect of glucocorticoid metabolites and neurosteroids on the gamma-aminobutyric acid-A receptor. Eur J Neurosci 21:2083–2088

    Article  PubMed  CAS  Google Scholar 

  • Tang X, Xiao J, Parris BS, Fang J, Sanford LD (2005) Differential effects of two types of environmental novelty on activity and sleep in BALB/cJ and C57BL/6J mice. Physiol Behav 85:419–429

    Article  PubMed  CAS  Google Scholar 

  • Torshin VI, Vlasova IG (2001) Biorhythmologic aspects of seizure activity. Bull Exp Biol Med 132:1025–1028

    Article  PubMed  CAS  Google Scholar 

  • Verleye M, Schlichter R, Gillardin JM (1999) Interactions of etifoxine with the chloride channel coupled to the GABA(A) receptor complex. Neuroreport 10:207–3210

    Article  Google Scholar 

  • Verleye M, Heulard I, Nuss P, Gillardin JM (2003) Effects of stress and etifoxine on pentobarbital-induced loss of righting reflex in Balb/cByJ and C57BL/6J mice. Neurosci Lett 353:127–130

    Article  PubMed  CAS  Google Scholar 

  • Verleye M, Akwa Y, Liere P, Ladurelle N, Pianos A, Eychenne B, Schumacher M, Gillardin JM (2005) The anxiolytic etifoxine activates the peripheral benzodiazepine receptor and increases the neurosteroid levels in rat brain. Pharmacol Biochem Behav 82:712–720

    Article  PubMed  CAS  Google Scholar 

  • Weizman R, Gavish M (1993) Molecular cellular and behavioral aspects of peripheral-type benzodiazepine receptors. Clin Neuropharmacol 16:401–417

    Article  PubMed  CAS  Google Scholar 

  • Whitwam JG, Amrein R (1995) Pharmacology of flumazenil. Acta Anaesthesiol Scand Suppl 108:3–14

    PubMed  CAS  Google Scholar 

Download references

Acknowledgments

The authors wish to thank Prof. René H. Levy (University of Washington, School of Pharmacy, Seattle, USA) for his helpful comments and suggestions regarding this manuscript.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Marc Verleye.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Verleye, M., Heulard, I. & Gillardin, JM. Investigation of the anticonvulsive effect of acute immobilization stress in anxious Balb/cByJ mice using GABAA-related mechanistic probes. Psychopharmacology 197, 523–534 (2008). https://doi.org/10.1007/s00213-007-1066-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00213-007-1066-7

Keywords

Navigation