Skip to main content

Advertisement

Log in

Acute and chronic tryptophan depletion differentially regulate central 5-HT1A and 5-HT2A receptor binding in the rat

  • Original Investigation
  • Published:
Psychopharmacology Aims and scope Submit manuscript

Abstract

Rationale

Tryptophan depletion is used to reduce central serotonergic function and to investigate its role in psychiatric illness. Despite widespread clinical use, its effects on serotonin (5-HT) receptors have not been well characterized.

Objective

The aim of this study was to examine the effect of acute (ATD) and chronic tryptophan depletion (CTD) on free-plasma tryptophan (TRP), central TRP and 5-HT and brain 5-HT1A and 5-HT2A receptor binding in the rat.

Methods

TRP and 5-HT were measured by high-performance liquid chromatography and receptor levels determined by homogenate radioligand binding and in-vitro receptor autoradiography.

Results

Free-plasma TRP, central TRP and central 5-HT levels were significantly and similarly reduced by ATD and 1- and 3-week CTD compared to controls. ATD significantly reduced 5-HT1A binding in the dorsal raphe (14%) but did not significantly alter postsynaptic 5-HT1A binding (frontal cortex, remaining cortex and hippocampus) or 5-HT2A binding (cortex and striatum). One-week CTD did not significantly alter cortical 5-HT2A binding or postsynaptic 5-HT1A binding. Furthermore, 3-week CTD did not significantly alter 5-HT1A binding but significantly increased cortical 5-HT2A binding without affecting striatal or hippocampal levels. In the CTD 1 and 3-week groups, rat body weight was significantly decreased as compared to controls. However, weight loss was not a confounding factor for decreased cortical 5-HT2A-receptor binding.

Conclusion

ATD-induced reduction in somatodendritic 5-HT1A autoreceptor binding may represent an intrinsic ‘homeostatic response’ reducing serotonergic feedback in dorsal raphe projection areas. In contrast, the increase in 5-HT2A receptor after CTD may be a compensatory response to a long-term reduction in 5-HT.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

References

  • Bell N, Artigas F (1996) Reduction of serotonergic function in rat brain by tryptophan depletion: effects in control and fluvoxamine-treated rats. J Neurochem 67:669–676

    Article  Google Scholar 

  • Bell C, Abrams J, Nutt D (2001) Tryptophan depletion and its implications for psychiatry. Br J Psychiatry 178:399–405

    Article  PubMed  CAS  Google Scholar 

  • Bell CJ, Hood SD, Nutt DJ (2005) Acute tryptophan depletion. Part II. Clinical effects and implications. Aust N Z J Psychiatry 39:565–574

    Article  PubMed  Google Scholar 

  • Biggio G, Fadda F, Fanni P, Tagliamonte A, Gessa GL (1974) Rapid depletion of serum tryptophan, brain tryptophan, serotonin 5-hydroxyindoleacetic acid by a tryptophan-free diet. Life Sci 14:1321–1329

    Article  PubMed  CAS  Google Scholar 

  • Blackshear MA, Steranka LR, Sanders-Bush E (1981) Multiple serotonin receptors: Regional distribution and effect of raphe lesions. Eur J Pharmacol 76:325–334

    Article  PubMed  CAS  Google Scholar 

  • Blier P, De Montigny C (1994) Current advances and trends in the treatment of depression. Trends Pharmacol Sci 15:220–226

    Article  PubMed  CAS  Google Scholar 

  • Blokland A, Lieben C, Deutz NE (2002) Anxiogenic and depressive-like effects, but no cognitive deficits, after repeated moderate tryptophan depletion in the rat. J Psychopharmacol 16:39–49

    PubMed  CAS  Google Scholar 

  • Brotto LA, Gorzalka BB, Hanson LA (1998) Effects of housing conditions and 5-HT2A activation on male rat sexual behaviour. Physiol Behav 63:475–479

    Article  PubMed  CAS  Google Scholar 

  • Casanovas JM, Vilaro MT, Mengold G, Artigas F (1999) Differential regulation of somatodendritic serotonin 5-HT1A receptors by 2-week treatments with the selective agonists alnespirone (S-20499) and 8-hydroxy-2-(Di-n-propylamino)tetralin: microdialysis and autoradiographic studies in rat brain. J Neurochem 72:262–272

    Article  PubMed  CAS  Google Scholar 

  • Chalmers DT, McCulloch J (1991) Alterations in neurotransmitter receptors and glucose use after unilateral orbital enucleation. Brain Res 540:243–254

    Article  PubMed  CAS  Google Scholar 

  • Compan V, Segu L, Buhot MC, Daszuta A (1998) Differential effects of serotonin (5-HT) lesions and synthesis blockade on neuropeptide Y immunoreactivity and 5-HT1A, 5-HT1B/1D and 5-HT2A/2C receptor binding sites in the rat cerebral cortex. Brain Res 795:264–276

    Article  PubMed  CAS  Google Scholar 

  • Conn PJ, Sanders-Bush E (1986) Regulation of serotonin-stimulated phosphoinositide hydrolysis: Regulation to the serotonin 5-HT2 binding site. J Neurosci 6:3669–3675

    PubMed  CAS  Google Scholar 

  • Cowen PJ, Parry-Billings M, Newsholme EA (1989) Decreased plasma tryptophan levels in major depression. J Affect Disord 16:27–31

    Article  PubMed  CAS  Google Scholar 

  • Delgado PL, Charney DS, Price LH, Aghajanian GK, Landis H, Heninger GR (1990) Serotonin function and the mechanism of antidepressant action: reversal of antidepressant-induced remission by rapid depletion of plasma tryptophan. Arch Gen Psychiatry 47:411–418

    PubMed  CAS  Google Scholar 

  • Delgado PL, Miller HL, Salomon RM, Licinio J, Krystsl JH, Moreno FA, Heninger GR, Charney FS (1993) Monoamines and the mechanism of antidepressant action: Effects of catecholamine depletion on mood of patients treated with antidepressants. Psychopharmacol Bull 29:389–393

    PubMed  CAS  Google Scholar 

  • Dewar KM, Grondin L, Carli M, Lima L, Reader TA (1992) [3H] paroxetine binding and serotonin content of rat cortical areas, hippocampus, neostriatum, ventral mesencephalic regmentum, and midbrain raphe nuclei region following p-chlorophenylalanine and p-chloroamphetamine treatment. J Neurochem 58:250–257

    Article  PubMed  CAS  Google Scholar 

  • D’Souza DN, Zhang Y, Garcia F, Battaglia G, Van de Kar LD (2004) Fluoxetine-induced changes in body weight and 5-HT1A receptor mediated hormone secretion in rats on a tryptophan deficient diet. Am J Physiol Regul Integr Comp Physiol 286:R390–R397

    PubMed  CAS  Google Scholar 

  • Fadda F, Cocco S, Stancampiano (2000) A physiological method to selectively decrease brain serotonin release. Brain Res Protoc 5:219–222

    Article  CAS  Google Scholar 

  • Fischette CT, Biegon A, McEwen BS (1983) Sex differences in serotonin 1 receptor binding in rat brain. Science 222:333–335

    Article  PubMed  CAS  Google Scholar 

  • Fischette CT, Nock B, Renner K (1987) Effects of 5,7-DHT on serotonin 1 and serotonin 2 receptors throughout the rat central nervous system using quantitative autoradiography. Brain Res 421:263–279

    Article  PubMed  CAS  Google Scholar 

  • Franklin M, Cowen PJ, Craven RD (1995) The effects of a low tryptophan diet on brain 5-HT metabolism and 5-HT mediated neuroendrocrine responses in the male rat. J Psychopharmacol 9:336–341

    CAS  Google Scholar 

  • Franklin M, Craven RD, Dowling B, Campling G, Elliott JM, Cowen PJ (1999) Effect of a low tryptophan diet on the prolactin responses to the 5-HT1A and the 5-HT2C agonists, 8-OH-DPAT and mCPP in the male rat. J Psychopharmacol 13:58–63

    PubMed  CAS  Google Scholar 

  • Heal DJ, Philpot J, Molyneux SG, Metz A (1985) Intracerebroventricular administration of 5,7-DHT to mice increases both head twitch response and the number of cortical 5-HT2 receptors. Neuropharmacology 24:1201–1205

    Article  PubMed  CAS  Google Scholar 

  • Hood SD, Hince DA, Robinson H, Cirillo M, Christmas D, Kaye JM (2006) Serotonin regulation of the human stress response. Psychoneuroendocrinology 31:1087–1097

    Article  PubMed  CAS  Google Scholar 

  • Kawai K, Yokota N, Yamawaki S (1994) Effect of chronic tryptophan depletion on the circadian rhythm of wheel-running activity in rats. Physiol Behav 55:1005–1013

    Article  PubMed  CAS  Google Scholar 

  • Khawaja X, Evans N, Reilly Y, Ennis C, Minchin CW (1995) Characterisation of the binding of [3H]WAY-100635, a novel 5-HT1A receptor antagonist to rat brain. J Neurochem 64:2716–2726

    Article  PubMed  CAS  Google Scholar 

  • Kornum BR, Licht CL, Weikop P, Knudsen GM, Aznar S (2006) Central serotonin depletion affects rat brain areas differently: a qualitative and quantitative comparison between different treatment schemes. Neurosci Lett 392:129–134

    Article  PubMed  CAS  Google Scholar 

  • Kuroda Y, Mikuni M, Ogawa T, Takahashi K (1992) Effect of ACTH, adrenalectonomy and the combination treatment on the density of 5-HT2 receptor binding sites in neocortex of rat forebrain and 5-HT2 receptor-mediated wet-dog shakes. Psychopharmacology 108:27–32

    Article  PubMed  CAS  Google Scholar 

  • Laaris N, Haj-Dahmane S, Hamon M, Lanfumey L (1995) Glucocorticoid receptor mediated inhibition by corticosterone of 5-HT1A autoreceptor functioning in the rat dorsal raphe nucleus. Neuropharmacology 34:1201–1210

    Article  PubMed  CAS  Google Scholar 

  • Lin RC, Costa E, Neff NH, Wang CT, Ngai SH (1969) In-vivo measurement of 5-HT turnover rate in the rat brain from the conversion of C14-tryptophan to C14-5-HT. J Pharmacol Exp Ther 170:232–238

    PubMed  CAS  Google Scholar 

  • Mann M-S, Young AH, McAllister-Williams (2002) Corticosterone modulation of somatoidendritic 5-HT1A receptor function in mice. J Psychopharmacol 16:245–252

    Article  Google Scholar 

  • McGregor IS, Clemens KJ, Van der Plasse G, Li KM, Chen F, Lawrence A (2003) Increased anxiety 3 months after brief exposure to MDMA (ecstasy) in rats: association with altered 5-HT transporter and receptor density. Neuropsychopharmacology 28:1472–1484

    Article  PubMed  CAS  Google Scholar 

  • Meneses A (1999) 5-HT system and cognition. Neurosci Biobehav Rev 23:1111–1125

    Article  PubMed  CAS  Google Scholar 

  • Moore P, Landolt H-P, Seifritz E, Clark C, Bhatti T, Kelsoe J, Rapaport M, Gillin C (2000) Clinical and physiological consequences of rapid tryptophan depletion. Neuropsychopharmacology 23:601–622

    Article  PubMed  CAS  Google Scholar 

  • Nishizawa S, Benkelfat C, Young SN, Leyton M, Mzengeza S, De Montigny C, Blier P, Diksic M (1997) Differences between males and females in rates of serotonin synthesis in human brain. Proc Natl Acad Sci USA 94:5308–5313

    Article  PubMed  CAS  Google Scholar 

  • Paxinos G and Watson C (1998) The rat brain in stereotaxic coordinates. Academic, San Diego, CA, USA

    Google Scholar 

  • Reilly JG, McTavish SF, Young AH (1997) Rapid depletion of plasma tryptophan: a review of studies and experimental methodology. Br J Psychopharmacol 11:381–392

    Article  CAS  Google Scholar 

  • Riedel WJ (2004) Cognitive changes after acute tryptophan depletion: What do they tell us? Psychol Med 34:3–8

    Article  PubMed  Google Scholar 

  • Rosse RB, Schwartz BL, Zlotolow S, Banay-Schwartz M, Trinidad AC, Peace TD, Deutsch SI (1992) Effect of a low-tryptophan diet as an adjuvant to conventional neuroleptic therapy in schizophrenia. Clin Neuropharmacol 15:129–141

    Article  PubMed  CAS  Google Scholar 

  • Seeman P, Westman K, Coscina D, Warsh JJ (1980) Serotonin receptors in hippocampus and frontal cortex. Eur J Pharmacol 66:179–191

    Article  PubMed  CAS  Google Scholar 

  • Sumiyoshi T, Ichikawa J, Meltzer HY (1997) The effect of streptozotocin induced diabetes on dopamine 2, serotonin 1A and serotonin 2A receptors in the rat brain. Neuropsychopharmacology 16:183–190

    Article  PubMed  CAS  Google Scholar 

  • Van Praag HM, Korf J, Puite J (1970) 5-Hydroxyindoleacetic acid levels in the cerebrospinal fluid of depressive patients treated with probenecid. Nature 225:1259–1290

    Article  PubMed  Google Scholar 

  • Verge D, Daval G, Marcinkiewiczm M, Patey A, Mestikawy S, Gozlan H, Hamon M (1986) Quantitative autoradiography of multiple 5-HT1 receptor subtypes in the brain of control or 5, 7-dihydroxytryptamine-treated rats. J Neurosci 6:3474–3482

    PubMed  CAS  Google Scholar 

  • Yatham LN, Liddle PF, Shias IS, Lam RW, Adam MJ, Zis AP, Ruth, TJ (2001) Effects of rapid tryptophan depletion on brain 5HT2 receptors: a PET study. Br J Psychiatry 178:448–453

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgement

This research was supported by a grant from the Research and Development Office of the Department of Health, Social Services and Public Safety in Northern Ireland. All experiments contained within this manuscript comply with the current laws of the UK. We thank Dr. C. Kelly for helpful comments regarding the manuscript.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Marie Cahir.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Cahir, M., Ardis, T., Reynolds, G.P. et al. Acute and chronic tryptophan depletion differentially regulate central 5-HT1A and 5-HT2A receptor binding in the rat. Psychopharmacology 190, 497–506 (2007). https://doi.org/10.1007/s00213-006-0635-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00213-006-0635-5

Keywords

Navigation