Skip to main content

Advertisement

Log in

Amino acid challenge and depletion techniques in human functional neuroimaging studies: an overview

  • Review Article
  • Published:
Amino Acids Aims and scope Submit manuscript

Abstract

Imbalances of neurotransmitter systems, particularly serotonin (5-HT) and dopamine (DA), are known to play an essential role in many neuropsychiatric disorders. The transient manipulation of such systems through the alteration of their amino acid precursors is a well-known research tool. Among these methods are alterations of tryptophan, the essential amino acid (AA) precursor of 5-HT, as well as manipulations of tyrosine and phenylalanine, the AA precursors of DA, which can be metabolized into norepinephrine and subsequently into epinephrine. These systems can be loaded by applying a large dose of these AAs or depleted by applying an amino acid mixture lacking the respective AAs serving as precursors. Functional neuroimaging has given insights into differential brain activation patterns and functions depending on the tasks performed, pharmacological treatments or specific disorders. Such research has shed light on the function of many brain areas as well as their interactions. The combination of AA challenge approaches with neuroimaging techniques has been subject of numerous studies. Overall, the studies conducted in this particular field of research have shown that AA challenge techniques are valid and effective research tools that allow the investigation of serotonergic and dopaminergic systems without causing serious side effects or long-term damage to the subjects. In this review, we will present an overview of the results obtained so far and discuss the implications of these findings as well as open questions that remain to be answered.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2

Similar content being viewed by others

References

  • Agren H, Reibring L (1994) PET studies of presynaptic monoamine metabolism in depressed patients and healthy volunteers. Pharmacopsychiatry 27:2–6

    CAS  PubMed  Google Scholar 

  • Allen PP, Cleare AJ, Lee F et al (2006) Effect of acute tryptophan depletion on pre-frontal engagement. Psychopharmacology 187:486–497. doi:10.1007/s00213-006-0444-x

    CAS  PubMed  Google Scholar 

  • Alonso R, Agharanya JC, Wurtman RJ (1980) Tyrosine loading enhances catecholamine excretion by rats. J Neural Transm 49:31–43

    CAS  PubMed  Google Scholar 

  • Altman HJ, Normile HJ, Galloway MP et al (1990) Enhanced spatial discrimination learning in rats following 5,7-DHT-induced serotonergic deafferentation of the hippocampus. Brain Res 518:61–66

    CAS  PubMed  Google Scholar 

  • Anderson IM, Richell RA, Bradshaw CM (2003) The effect of acute tryptophan depletion on probabilistic choice. J Psychopharmacol 17:3–7

    CAS  PubMed  Google Scholar 

  • Arce E, Simmons AN, Lovero KL et al (2008) Escitalopram effects on insula and amygdala BOLD activation during emotional processing. Psychopharmacology 196:661–672. doi:10.1007/s00213-007-1004-8

    PubMed Central  CAS  PubMed  Google Scholar 

  • Asberg M, Thorén P, Träskman L et al (1976) “Serotonin depression”—a biochemical subgroup within the affective disorders? Science 191:478–480

  • Barratt ES, Adams PM, Poffenbarger PL et al (1976) Effects of rapid depletion of phenylalanine and tyrosine on sleep and behavior. Pharmacol Biochem Behav 5:47–53

    CAS  PubMed  Google Scholar 

  • Bergström KA, Halldin C, Hall H et al (1997) In vitro and in vivo characterisation of nor-beta-CIT: a potential radioligand for visualisation of the serotonin transporter in the brain. Eur J Nucl Med 24:596–601

    PubMed  Google Scholar 

  • Biggio G, Fadda F, Fanni P et al (1974) Rapid depletion of serum tryptophan, brain tryptophan, serotonin and 5-hydroxyindoleacetic acid by a tryptophan-free diet. Life Sci 14:1321–1329

    CAS  PubMed  Google Scholar 

  • Biskup CS, Sánchez CL, Arrant A et al (2012) Effects of acute tryptophan depletion on brain serotonin function and concentrations of dopamine and norepinephrine in C57BL/6 J and BALB/cJ mice. PLoS One 7:e35916. doi:10.1371/journal.pone.0035916

    PubMed Central  CAS  PubMed  Google Scholar 

  • Bjork JM, Grant SJ, Chen G, Hommer DW (2014) Dietary tyrosine/phenylalanine depletion effects on behavioral and brain signatures of human motivational processing. Neuropsychopharmacology 39:595–604. doi:10.1038/npp.2013.232

    PubMed Central  CAS  PubMed  Google Scholar 

  • Blokland A, Lieben C, Deutz NEP (2002) Anxiogenic and depressive-like effects, but no cognitive deficits, after repeated moderate tryptophan depletion in the rat. J Psychopharmacol 16:39–49

    CAS  PubMed  Google Scholar 

  • Bremner JD, Innis RB, Salomon RM et al (1997) Positron emission tomography measurement of cerebral metabolic correlates of tryptophan depletion-induced depressive relapse. Arch Gen Psychiatry 54:364–374

    CAS  PubMed  Google Scholar 

  • Büchel C, Morris J, Dolan RJ, Friston KJ (1998) Brain systems mediating aversive conditioning: an event-related fMRI study. Neuron 20:947–957

    PubMed  Google Scholar 

  • Carli M, Reader TA (1997) Regulation of central serotonin transporters by chronic lithium: an autoradiographic study. Synapse 27:83–89. doi:10.1002/(SICI)1098-2396(199709)27:1<83:AID-SYN9>3.0.CO;2-9

    CAS  PubMed  Google Scholar 

  • Carlsson M, Carlsson A (1988) In vivo evidence for a greater brain tryptophan hydroxylase capacity in female than in male rats. Naunyn Schmiedebergs Arch Pharmacol 338:345–349

    CAS  PubMed  Google Scholar 

  • Carretti N, Florio P, Bertolin A et al (2005) Serum fluctuations of total and free tryptophan levels during the menstrual cycle are related to gonadotrophins and reflect brain serotonin utilization. Hum Reprod 20:1548–1553. doi:10.1093/humrep/deh795

    CAS  PubMed  Google Scholar 

  • Chance WT, Foley-Nelson T, Nelson JL, Fischer JE (1990) Tyrosine loading increases dopamine metabolite concentrations in the brain. Pharmacol Biochem Behav 35:195–199

    CAS  PubMed  Google Scholar 

  • Charney DS, Drevets WC (2002) The Neurobiological Basis of Anxiety Disorders. In: Davis K, Charney DS, Coyle J, Nemeroff C (eds) Neuropsychopharmacol. Fifth Gener, Prog, pp 900–930

    Google Scholar 

  • Clark L, Roiser JP, Cools R et al (2005) Stop signal response inhibition is not modulated by tryptophan depletion or the serotonin transporter polymorphism in healthy volunteers: implications for the 5-HT theory of impulsivity. Psychopharmacology 182:570–578. doi:10.1007/s00213-005-0104-6

    CAS  PubMed  Google Scholar 

  • Clarke HF, Robbins TW, Roberts AC (2008) Lesions of the medial striatum in monkeys produce perseverative impairments during reversal learning similar to those produced by lesions of the orbitofrontal cortex. J Neurosci 28:10972–10982. doi:10.1523/JNEUROSCI.1521-08.2008

    PubMed Central  CAS  PubMed  Google Scholar 

  • Coccaro EF, Kavoussi RJ, Trestman RL et al (1997) Serotonin function in human subjects: intercorrelations among central 5-HT indices and aggressiveness. Psychiatry Res 73:1–14

    CAS  PubMed  Google Scholar 

  • Cools R, Blackwell A, Clark L et al (2005a) Tryptophan depletion disrupts the motivational guidance of goal-directed behavior as a function of trait impulsivity. Neuropsychopharmacology 30:1362–1373. doi:10.1038/sj.npp.1300704

    CAS  PubMed  Google Scholar 

  • Cools R, Calder AJ, Lawrence AD et al (2005b) Individual differences in threat sensitivity predict serotonergic modulation of amygdala response to fearful faces. Psychopharmacology 180:670–679. doi:10.1007/s00213-005-2215-5

    CAS  PubMed  Google Scholar 

  • Coull JT, Hwang HJ, Leyton M, Dagher A (2012) Dopamine precursor depletion impairs timing in healthy volunteers by attenuating activity in putamen and supplementary motor area. J Neurosci 32:16704–16715. doi:10.1523/JNEUROSCI.1258-12.2012

    CAS  PubMed  Google Scholar 

  • Cowen P, Sherwood AC (2013) The role of serotonin in cognitive function: evidence from recent studies and implications for understanding depression. J Psychopharmacol 27:575–583. doi:10.1177/0269881113482531

    PubMed  Google Scholar 

  • Cox SML, Benkelfat C, Dagher A et al (2011) Effects of lowered serotonin transmission on cocaine-induced striatal dopamine response: PET [11C]raclopride study in humans. Br J Psychiatry 199:391–397. doi:10.1192/bjp.bp.110.084178

    PubMed  Google Scholar 

  • Crockett MJ, Clark L, Robbins TW (2009) Reconciling the role of serotonin in behavioral inhibition and aversion: acute tryptophan depletion abolishes punishment-induced inhibition in humans. J Neurosci 29:11993–11999. doi:10.1523/JNEUROSCI.2513-09.2009

    PubMed Central  CAS  PubMed  Google Scholar 

  • Daly E, Deeley Q, Hallahan B et al (2010) Effects of acute tryptophan depletion on neural processing of facial expressions of emotion in humans. Psychopharmacology 210:499–510. doi:10.1007/s00213-010-1850-7

    CAS  PubMed  Google Scholar 

  • Daly EM, Deeley Q, Ecker C et al (2012) Serotonin and the neural processing of facial emotions in adults with autism: an fMRI study using acute tryptophan depletion. Arch Gen Psychiatry 69:1003–1013. doi:10.1001/archgenpsychiatry.2012.513

    PubMed  Google Scholar 

  • Davis M, Whalen PJ (2001) The amygdala: vigilance and emotion. Mol Psychiatry 6:13–34

    CAS  PubMed  Google Scholar 

  • Daw ND, Kakade S, Dayan P (2002) Opponent interactions between serotonin and dopamine. Neural Netw 15:603–616

    PubMed  Google Scholar 

  • De Boer SF, Lesourd M, Mocaer E, Koolhaas JM (1999) Selective antiaggressive effects of alnespirone in resident-intruder test are mediated via 5-hydroxytryptamine1A receptors: a comparative pharmacological study with 8-hydroxy-2-dipropylaminotetralin, ipsapirone, buspirone, eltoprazine, and WAY-100635. J Pharmacol Exp Ther 288:1125–1133

    PubMed  Google Scholar 

  • Delgado PL, Price LH, Miller HL, Salomon RM, Aghajanian GK, Heniger GR, CHarney DS (1994) Serotonin and the neurobiology of depression, Effects of tryptophan depletion in drug-free depressed patients. Arch Gen Psych 51(11):865–874

    CAS  Google Scholar 

  • Demisch L, Kewitz A, Schmeck K et al (2002) Methodology of rapid tryptophan depletion (RTD): impact of gender and body weight. Eur Arch Psych Clin Neurosci 252:25

    Google Scholar 

  • Demoto Y, Okada G, Okamoto Y et al (2012) Neural and personality correlates of individual differences related to the effects of acute tryptophan depletion on future reward evaluation. Neuropsychobiology 65:55–64. doi:10.1159/000328990

    CAS  PubMed  Google Scholar 

  • Dingerkus VLS, Gaber TJ, Helmbold K et al (2012) Acute tryptophan depletion in accordance with body weight: influx of amino acids across the blood-brain barrier. J Neural Transm 119:1037–1045. doi:10.1007/s00702-012-0793-z

    PubMed Central  CAS  PubMed  Google Scholar 

  • Drevets WC, Bogers W, Raichle ME (2002) Functional anatomical correlates of antidepressant drug treatment assessed using PET measures of regional glucose metabolism. Eur Neuropsychopharmacol 12:527–544

    CAS  PubMed  Google Scholar 

  • Elliott R, Sahakian BJ, Herrod JJ et al (1997) Abnormal response to negative feedback in unipolar depression: evidence for a diagnosis specific impairment. J Neurol Neurosurg Psychiatry 63:74–82

    PubMed Central  CAS  PubMed  Google Scholar 

  • Ellis KA, Mehta MA, Naga Venkatesha Murthy PJ et al (2007) Tyrosine depletion alters cortical and limbic blood flow but does not modulate spatial working memory performance or task-related blood flow in humans. Hum Brain Mapp 28:1136–1149. doi:10.1002/hbm.20339

    PubMed  Google Scholar 

  • Epperson C, Amin Z, Ruparel K et al (2012) Interactive effects of estrogen and serotonin on brain activation during working memory and affective processing in menopausal women. Psychoneuroendocrinology 37:372–382. doi:10.1016/j.psyneuen.2011.07.007

    PubMed Central  CAS  PubMed  Google Scholar 

  • Evers EAT, Cools R, Clark L et al (2005) Serotonergic modulation of prefrontal cortex during negative feedback in probabilistic reversal learning. Neuropsychopharmacology 30:1138–1147. doi:10.1038/sj.npp.1300663

    CAS  PubMed  Google Scholar 

  • Evers EAT, van der Veen FM, Jolles J et al (2006a) Acute tryptophan depletion improves performance and modulates the BOLD response during a Stroop task in healthy females. Neuroimage 32:248–255. doi:10.1016/j.neuroimage.2006.03.026

    CAS  PubMed  Google Scholar 

  • Evers EAT, van der Veen FM, van Deursen JA et al (2006b) The effect of acute tryptophan depletion on the BOLD response during performance monitoring and response inhibition in healthy male volunteers. Psychopharmacology 187:200–208. doi:10.1007/s00213-006-0411-6

    CAS  PubMed  Google Scholar 

  • Fallgatter AJ, Herrmann MJ, Roemmler J et al (2004) Allelic variation of serotonin transporter function modulates the brain electrical response for error processing. Neuropsychopharmacology 29:1506–1511. doi:10.1038/sj.npp.1300409

    CAS  PubMed  Google Scholar 

  • Fikke LT, Melinder A, Landrø NI (2013) The effects of acute tryptophan depletion on impulsivity and mood in adolescents engaging in non-suicidal self-injury. Hum Psychopharmacol 28:61–71. doi:10.1002/hup.2283

    CAS  PubMed  Google Scholar 

  • Fish EW, Faccidomo S, Miczek KA (1999) Aggression heightened by alcohol or social instigation in mice: reduction by the 5-HT(1B) receptor agonist CP-94,253. Psychopharmacology 146:391–399

    CAS  PubMed  Google Scholar 

  • Fusar-Poli P, Allen P, Lee F et al (2007) Modulation of neural response to happy and sad faces by acute tryptophan depletion. Psychopharmacology 193:31–44. doi:10.1007/s00213-007-0757-4

    CAS  PubMed  Google Scholar 

  • Gál EM, Young RB, Sherman AD (1978) Tryptophan loading: consequent effects on the synthesis of kynurenine and 5-hydroxyindoles in rat brain. J Neurochem 31:237–244

    PubMed  Google Scholar 

  • Gläscher J, Büchel C (2005) Formal learning theory dissociates brain regions with different temporal integration. Neuron 47:295–306. doi:10.1016/j.neuron.2005.06.008

    PubMed  Google Scholar 

  • Glass JD, Selim M, Srkalovic G, Rea MA (1995) Tryptophan loading modulates light-induced responses in the mammalian circadian system. J Biol Rhythms 10:80–90

    CAS  PubMed  Google Scholar 

  • Goodnough DB, Baker GB (1994) 5-Hydroxytryptamine2 and beta-adrenergic receptor regulation in rat brain following chronic treatment with desipramine and fluoxetine alone and in combination. J Neurochem 62:2262–2268

    CAS  PubMed  Google Scholar 

  • Grabemann M, Mette C, Zimmermann M et al (2013) No clear effects of acute tryptophan depletion on processing affective prosody in male adults with ADHD. Acta Psychiatr Scand 128:142–148. doi:10.1111/acps.12130

    CAS  PubMed  Google Scholar 

  • Grady CL, Siebner HR, Hornboll B et al (2013) Acute pharmacologically induced shifts in serotonin availability abolish emotion-selective responses to negative face emotions in distinct brain networks. Eur Neuropsychopharmacol 23:368–378. doi:10.1016/j.euroneuro.2012.06.003

    CAS  PubMed  Google Scholar 

  • Gurd JM, Cowell PE, Lux S et al (2013) fMRI and corpus callosum relationships in monozygotic twins discordant for handedness. Brain Struct Funct 218:491–509. doi:10.1007/s00429-012-0410-9

    CAS  PubMed  Google Scholar 

  • Hamilton JP, Etkin A, Furman DJ et al (2012) Functional neuroimaging of major depressive disorder: a meta-analysis and new integration of base line activation and neural response data. Am J Psychiatry 169:693–703. doi:10.1176/appi.ajp.2012.11071105

    PubMed  Google Scholar 

  • Haxby J, Hoffman E, Gobbini M (2000) The distributed human neural system for face perception. Trends Cogn Sci 4:223–233

    PubMed  Google Scholar 

  • Haxby JV, Hoffman EA, Gobbini MI (2002) Human neural systems for face recognition and social communication. Biol Psychiatry 51:59–67

    PubMed  Google Scholar 

  • Helmbold K, Bubenzer S, Dahmen B et al (2013) Influence of acute tryptophan depletion on verbal declarative episodic memory in young adult females. Amino Acids 45:1207–1219. doi:10.1007/s00726-013-1582-1

    CAS  PubMed  Google Scholar 

  • Helmbold K, Zvyagintsev M, Dahmen B, Bubenzer-Busch S, Gaber TJ, Crockett MJ, Klasen M, Sanchez CL, Eisert A, Konrad K, Habel U, Herpertz-Dahlmann B, Zepf FD (2015) Effects of serotonin depletion on punishment processing in the orbitofrontal and anterior cingulate cortices of healthy women. Euro Neuropsychopharmacol (accepted)

  • Hernandez G, Haines E, Rajabi H et al (2007) Predictable and unpredictable rewards produce similar changes in dopamine tone. Behav Neurosci 121:887–895. doi:10.1037/0735-7044.121.5.887

    CAS  PubMed  Google Scholar 

  • Higley JD, Mehlman PT, Poland RE et al (1996) CSF testosterone and 5-HIAA correlate with different types of aggressive behaviors. Biol Psychiatry 40:1067–1082. doi:10.1016/S0006-3223(95)00675-3

    CAS  PubMed  Google Scholar 

  • Hindi Attar C, Finckh B, Büchel C (2012) The influence of serotonin on fear learning. PLoS ONE 7:e42397. doi:10.1371/journal.pone.0042397

    PubMed Central  PubMed  Google Scholar 

  • Hobson RM, Watson P, Maughan RJ (2013) Acute tryptophan depletion does not improve endurance cycling capacity in a warm environment. Amino Acids 44:983–991. doi:10.1007/s00726-012-1429-1

    CAS  PubMed  Google Scholar 

  • Horacek J, Zavesicka L, Tintera J (2005) The effect of tryptophan depletion on brain activation measured by functional magnetic resonance imaging during the Stroop test in healthy subjects. Physiol Res 54:235–244

    CAS  PubMed  Google Scholar 

  • Jacobs BL, Azmitia EC (1992) Structure and function of the brain serotonin system. Physiol Rev 72:165–229

    CAS  PubMed  Google Scholar 

  • Kanwisher N, McDermott J, Chun MM (1997) The fusiform face area: a module in human extrastriate cortex specialized for face perception. J Neurosci 17:4302–4311

    CAS  PubMed  Google Scholar 

  • Kewitz A (2002) Biochemische untersuchungen zur Optimierung des “‘Rapid Tryptophan Depletion-Test’” (RTD)—eine physiologi- sche Methode zur akuten Verminderung der zentralnervösen Serotonin-Synthese in der psychobiologischen Forschung. Johann Wolfgang Goethe-Universität, Frankfurt am Main

    Google Scholar 

  • Knott V, Bisserbe J-C, Shah D et al (2013) The moderating influence of nicotine and smoking on resting-state mood and EEG changes in remitted depressed patients during tryptophan depletion. Biol Psychol 94:545–555. doi:10.1016/j.biopsycho.2013.09.008

    PubMed  Google Scholar 

  • Kötting WF, Bubenzer S, Helmbold K et al (2013) Effects of tryptophan depletion on reactive aggression and aggressive decision-making in young people with ADHD. Acta Psychiatr Scand 128:114–123. doi:10.1111/acps.12001

    PubMed  Google Scholar 

  • Krämer UM, Riba J, Richter S, Münte TF (2011) An fMRI study on the role of serotonin in reactive aggression. PLoS ONE 6:e27668. doi:10.1371/journal.pone.0027668

    PubMed Central  PubMed  Google Scholar 

  • LaBar KS, Gatenby JC, Gore JC et al (1998) Human amygdala activation during conditioned fear acquisition and extinction: a mixed-trial fMRI study. Neuron 20:937–945

    CAS  PubMed  Google Scholar 

  • Labus J, Mayer E, Jarcho J et al (2011) Acute tryptophan depletion alters the effective connectivity of emotional arousal circuitry during visceral stimuli in healthy women. Gut. doi:10.1136/gut.2010.213447

    PubMed Central  PubMed  Google Scholar 

  • Laird AR, McMillan KM, Lancaster JL et al (2005) A comparison of label-based review and ALE meta-analysis in the Stroop task. Hum Brain Mapp 25:6–21. doi:10.1002/hbm.20129

    PubMed  Google Scholar 

  • Lamar M, Cutter WJ, Rubia K et al (2009) 5-HT, prefrontal function and aging: fMRI of inhibition and acute tryptophan depletion. Neurobiol Aging 30:1135–1146. doi:10.1016/j.neurobiolaging.2007.09.013

    CAS  PubMed  Google Scholar 

  • Leyton M, Dagher A, Boileau I et al (2004) Decreasing amphetamine-induced dopamine release by acute phenylalanine/tyrosine depletion: a PET/[11C]raclopride study in healthy men. Neuropsychopharmacology 29:427–432. doi:10.1038/sj.npp.1300328

    CAS  PubMed  Google Scholar 

  • Lieben CKJ, van Oorsouw K, Deutz NEP, Blokland A (2004) Acute tryptophan depletion induced by a gelatin-based mixture impairs object memory but not affective behavior and spatial learning in the rat. Behav Brain Res 151:53–64. doi:10.1016/j.bbr.2003.08.002

    CAS  PubMed  Google Scholar 

  • Macoveanu J, Hornboll B, Elliott R et al (2013) Serotonin 2A receptors, citalopram and tryptophan-depletion: a multimodal imaging study of their interactions during response inhibition. Neuropsychopharmacology 38:996–1005. doi:10.1038/npp.2012.264

    PubMed Central  CAS  PubMed  Google Scholar 

  • McClure SM, Daw ND, Montague PR (2003) A computational substrate for incentive salience. Trends Neurosci 26:423–428

    CAS  PubMed  Google Scholar 

  • Mehlman PT, Higley JD, Faucher I et al (1994) Low CSF 5-HIAA concentrations and severe aggression and impaired impulse control in nonhuman primates. Am J Psychiatry 151:1485–1491

    CAS  PubMed  Google Scholar 

  • Meneses A, Liy-Salmeron G (2012) Serotonin and emotion, learning and memory. Rev Neurosci 23:543–553. doi:10.1515/revneuro-2012-0060

    CAS  PubMed  Google Scholar 

  • Mette C, Zimmermann M, Grabemann M et al (2013) The impact of acute tryptophan depletion on attentional performance in adult patients with ADHD. Acta Psychiatr Scand 128:124–132. doi:10.1111/acps.12090

    CAS  PubMed  Google Scholar 

  • Meyers S (2000) Use of neurotransmitter precursors for treatment of depression. Altern Med Rev 5:64–71

    CAS  PubMed  Google Scholar 

  • Mobascher A, Warbrick T, Brinkmeyer J et al (2012) Nicotine effects on anterior cingulate cortex in schizophrenia and healthy smokers as revealed by EEG-informed fMRI. Psychiatry Res 204:168–177. doi:10.1016/j.pscychresns.2012.09.005

    CAS  PubMed  Google Scholar 

  • Montgomery AJ, McTavish SFB, Cowen PJ, Grasby PM (2003) Reduction of brain dopamine concentration with dietary tyrosine plus phenylalanine depletion: an [11C]raclopride PET study. Am J Psychiatry 160:1887–1889

    PubMed  Google Scholar 

  • Morris JS, Smith KA, Cowen PJ et al (1999) Covariation of Activity in Habenula and Dorsal Raphé Nuclei Following Tryptophan Depletion. Neuroimage 10:163–172

    CAS  PubMed  Google Scholar 

  • Moss HB, Yao JK, Panzak GL (1990) Serotonergic responsivity and behavioral dimensions in antisocial personality disorder with substance abuse. Biol Psychiatry 28:325–338

    CAS  PubMed  Google Scholar 

  • Murphy FC, Michael A, Robbins TW, Sahakian BJ (2003) Neuropsychological impairment in patients with major depressive disorder: the effects of feedback on task performance. Psychol Med 33:455–467

    CAS  PubMed  Google Scholar 

  • Nagano-Saito A, Leyton M, Monchi O et al (2008) Dopamine depletion impairs frontostriatal functional connectivity during a set-shifting task. J Neurosci 28:3697–3706. doi:10.1523/JNEUROSCI.3921-07.2008

    CAS  PubMed  Google Scholar 

  • Nagano-Saito A, Cisek P, Perna AS et al (2012) From anticipation to action, the role of dopamine in perceptual decision making: an fMRI-tyrosine depletion study. J Neurophysiol 108:501–512. doi:10.1152/jn.00592.2011

    PubMed  Google Scholar 

  • Neumeister A, Praschak-Rieder N, Heßelmann B, Vitouch O, Rauh M, Barocka A, Kasper S (1997) Rapid tryptophan depletion in drug-free depressed patients with seasonal affective disorder. Am J Psychiatry 154(8):1153–1155

    CAS  PubMed  Google Scholar 

  • Neumeister A, Nugent AC, Waldeck T et al (2004) Neural and behavioral responses to tryptophan depletion in unmedicated patients with remitted major depressive disorder and controls. Arch Gen Psychiatry 1–15. doi:10.1001/archpsyc.61.8.765

  • Neumeister A, Hu X-Z, Luckenberg DA et al (2006) Differential effects of 5-HTTLPR genotypes on the behavioral and neural responses to tryptophan depletion in patients with major depression and controls. Arch Gen Psychiatry 63:978–986

    CAS  PubMed  Google Scholar 

  • Nishizawa S, Benkelfat C, Young SN et al (1997) Differences between males and females in rates of serotonin synthesis in human brain. Proc Natl Acad Sci USA 94:5308–5313

    PubMed Central  CAS  PubMed  Google Scholar 

  • Nugent A, Neumeister A, Goldman D et al (2008) Serotonin transporter genotype and depressive phenotype determination by discriminant analysis of glucose metabolism under acute tryptophan depletion. Neuroimage 43:764–774. doi:10.1016/j.neuroimage.2008.07.040.Serotonin

    PubMed Central  PubMed  Google Scholar 

  • O’Doherty JP, Dayan P, Friston K et al (2003) Temporal difference models and reward-related learning in the human brain. Neuron 38:329–337

    PubMed  Google Scholar 

  • Ogawa S, Menon RS, Tank DW et al (1993) Functional brain mapping by blood oxygenation level-dependent contrast magnetic resonance imaging. A comparison of signal characteristics with a biophysical model. Biophys J 64:803–812. doi:10.1016/S0006-3495(93)81441-3

    PubMed Central  CAS  PubMed  Google Scholar 

  • Park SB, Coull JT, McShane RH et al (1994) Tryptophan depletion in normal volunteers produces selective impairments in learning and memory. Neuropharmacology 33:575–588

    CAS  PubMed  Google Scholar 

  • Passamonti L, Crockett MJ, Apergis-Schoute AM et al (2012) Effects of acute tryptophan depletion on prefrontal-amygdala connectivity while viewing facial signals of aggression. Biol Psychiatry 71:36–43. doi:10.1016/j.biopsych.2011.07.033

    PubMed Central  CAS  PubMed  Google Scholar 

  • Peroutka SJ, Snyder SH (1980) Long-term antidepressant treatment decreases spiroperidol-labeled serotonin receptor binding. Science 210:88–90

    CAS  PubMed  Google Scholar 

  • Praschak-Rieder N, Hussey D, Wilson AA et al (2004) Tryptophan depletion and serotonin loss in selective serotonin reuptake inhibitor-treated depression: an [(18)F] MPPF positron emission tomography study. Biol Psychiatry 56:587–591. doi:10.1016/j.biopsych.2004.07.018

    CAS  PubMed  Google Scholar 

  • Praschak-Rieder N, Wilson AA, Hussey D et al (2005) Effects of tryptophan depletion on the serotonin transporter in healthy humans. Biol Psychiatry 58:825–830. doi:10.1016/j.biopsych.2005.04.038

    CAS  PubMed  Google Scholar 

  • Price LH, Malison RT, McDougle CJ, Pelton GH, Heninger GR (1998) The neurobiology of tryptophan depletion in depression: effects of intravenous tryptophan infusion. Biol Psychiatry 43(5):339–347

    CAS  PubMed  Google Scholar 

  • Rizza V, Bousquet E, Guerrera F, De Regis M (1983) Regulation of cerebral kynurenine and 5-hydroxyindole pathways during tryptophan loading. Cephalalgia 3(Suppl 1):139–142

    PubMed  Google Scholar 

  • Robbins TW (2005) Chemistry of the mind: neurochemical modulation of prefrontal cortical function. J Comp Neurol 493:140–146. doi:10.1002/cne.20717

    CAS  PubMed  Google Scholar 

  • Robinson OJ, Cools R, Sahakian BJ (2012) Tryptophan depletion disinhibits punishment but not reward prediction: implications for resilience. Psychopharmacology 219:599–605. doi:10.1007/s00213-011-2410-5

    PubMed Central  CAS  PubMed  Google Scholar 

  • Robinson OJ, Overstreet C, Allen PS et al (2013) The role of serotonin in the neurocircuitry of negative affective bias: serotonergic modulation of the dorsal medial prefrontal-amygdala “aversive amplification” circuit. Neuroimage 78:217–223. doi:10.1016/j.neuroimage.2013.03.075

    PubMed Central  CAS  PubMed  Google Scholar 

  • Rogers RD, Blackshaw AJ, Middleton HC et al (1999) Tryptophan depletion impairs stimulus-reward learning while methylphenidate disrupts attentional control in healthy young adults: implications for the monoaminergic basis of impulsive behaviour. Psychopharmacology 146:482–491

    CAS  PubMed  Google Scholar 

  • Rogers RD, Tunbridge EM, Bhagwagar Z et al (2003) Tryptophan depletion alters the decision-making of healthy volunteers through altered processing of reward cues. Neuropsychopharmacology 28:153–162. doi:10.1038/sj.npp.1300001

    CAS  PubMed  Google Scholar 

  • Roiser J, Levy J, Fromm S et al (2008) The effect of acute tryptophan depletion on the neural correlates of emotional processing in healthy volunteers. Neuropsychopharmacology 33:1992–2006. doi:10.1038/sj.npp.1301581

    PubMed Central  CAS  PubMed  Google Scholar 

  • Roiser JP, Levy J, Fromm SJ et al (2009) The effects of tryptophan depletion on neural responses to emotional words in remitted depression. Biol Psychiatry 66:441–450. doi:10.1016/j.biopsych.2009.05.002

    PubMed Central  CAS  PubMed  Google Scholar 

  • Roiser JP, Levy J, Fromm SJ et al (2012) Serotonin transporter genotype differentially modulates neural responses to emotional words following tryptophan depletion in patients recovered from depression and healthy volunteers. J Psychopharmacol 26:1434–1442. doi:10.1177/0269881112442789

    PubMed Central  CAS  PubMed  Google Scholar 

  • Rossion B, Schiltz C, Crommelinck M (2003) The functionally defined right occipital and fusiform “face areas” discriminate novel from visually familiar faces. Neuroimage 19:877–883

    PubMed  Google Scholar 

  • Rubia K, Lee F, Cleare AJ et al (2005) Tryptophan depletion reduces right inferior prefrontal activation during response inhibition in fast, event-related fMRI. Psychopharmacology 179:791–803. doi:10.1007/s00213-004-2116-z

    CAS  PubMed  Google Scholar 

  • Rubinow DR, Schmidt PJ, Roca CA (1998) Estrogen-serotonin interactions: implications for affective regulation. Biol Psychiatry 44:839–850

    CAS  PubMed  Google Scholar 

  • Sacher J, Rabiner EA, Clark M et al (2012) Dynamic, adaptive changes in MAO-A binding after alterations in substrate availability: an in vivo [(11)C]-harmine positron emission tomography study. J Cereb Blood Flow Metab 32:443–446. doi:10.1038/jcbfm.2011.184

    PubMed Central  CAS  PubMed  Google Scholar 

  • Salomon RM, Cowan RL, Rogers BP et al (2011) Time series fMRI measures detect changes in pontine raphé following acute tryptophan depletion. Psychiatry Res 191:112–121. doi:10.1016/j.pscychresns.2010.10.007

    PubMed Central  PubMed  Google Scholar 

  • Sambeth A, Blokland A, Harmer CJ et al (2007) Sex differences in the effect of acute tryptophan depletion on declarative episodic memory: a pooled analysis of nine studies. Neurosci Biobehav Rev 31:516–529. doi:10.1016/j.neubiorev.2006.11.009

    CAS  PubMed  Google Scholar 

  • Sánchez CL, Van Swearingen AED, Arrant AE et al (2014) Dietary manipulation of serotonergic and dopaminergic function in C57BL/6 J mice with amino acid depletion mixtures. J Neural Transm 121:153–162. doi:10.1007/s00702-013-1083-0

    PubMed  Google Scholar 

  • Schultz W, Dayan P, Montague PR (1997) A neural substrate of prediction and reward. Science 275:1593–1599

    CAS  PubMed  Google Scholar 

  • Seeman P (2013) Are dopamine D2 receptors out of control in psychosis? Prog Neuropsychopharmacol Biol Psychiatry 46:146–152. doi:10.1016/j.pnpbp.2013.07.006

    CAS  PubMed  Google Scholar 

  • Seymour B, Daw ND, Roiser JP et al (2012a) Serotonin selectively modulates reward value in human decision-making. J Neurosci 32:5833–5842. doi:10.1523/JNEUROSCI.0053-12.2012

    CAS  PubMed  Google Scholar 

  • Seymour KE, Chronis-Tuscano A, Halldorsdottir T et al (2012b) Emotion regulation mediates the relationship between ADHD and depressive symptoms in youth. J Abnorm Child Psychol 40:595–606. doi:10.1007/s10802-011-9593-4

    PubMed  Google Scholar 

  • Sharma A, Couture J (2014) A review of the pathophysiology, etiology, and treatment of attention-deficit hyperactivity disorder (ADHD). Ann Pharmacother 48:209–225. doi:10.1177/1060028013510699

    PubMed  Google Scholar 

  • Siegle GJ, Steinhauer SR, Thase ME et al (2002) Can’t shake that feeling: event-related fMRI assessment of sustained amygdala activity in response to emotional information in depressed individuals. Biol Psychiatry 51:693–707

    PubMed  Google Scholar 

  • Smith KA, Morris JS, Friston KJ et al (1999) Brain mechanisms associated with depressive relapse and associated cognitive impairment following acute tryptophan depletion. Br J Psychiatry 174:525–529. doi:10.1192/bjp.174.6.525

    CAS  PubMed  Google Scholar 

  • Stein DJ (2008) Depression, anhedonia, and psychomotor symptoms: the role of dopaminergic neurocircuitry. CNS Spectr 13:561–565

    PubMed  Google Scholar 

  • Stroop JR (1935) Studies of interference in serial verbal reactions. J Exp Psychol 18:643–662. doi:10.1037/h0054651

    Google Scholar 

  • Stuber GD, Klanker M, de Ridder B et al (2008) Reward-predictive cues enhance excitatory synaptic strength onto midbrain dopamine neurons. Science 321:1690–1692. doi:10.1126/science.1160873

    PubMed Central  CAS  PubMed  Google Scholar 

  • Sutton R, Barto M (1998) Reinforcement learning: an introduction. The MIT Press, Cambridge

    Google Scholar 

  • Taffe MA, Huitrón-Resendiz S, Schroeder R et al (2003) MDMA exposure alters cognitive and electrophysiological sensitivity to rapid tryptophan depletion in rhesus monkeys. Pharmacol Biochem Behav 76:141–152

    CAS  PubMed  Google Scholar 

  • Talbot PS, Frankle WG, Hwang D-R et al (2005) Effects of reduced endogenous 5-HT on the in vivo binding of the serotonin transporter radioligand 11C-DASB in healthy humans. Synapse 55:164–175. doi:10.1002/syn.20105

    CAS  PubMed  Google Scholar 

  • Talbot PS, Slifstein M, Hwang D-R et al (2012) Extended characterisation of the serotonin 2A (5-HT2A) receptor-selective PET radiotracer 11C-MDL100907 in humans: quantitative analysis, test-retest reproducibility, and vulnerability to endogenous 5-HT tone. Neuroimage 59:271–285. doi:10.1016/j.neuroimage.2011.07.001

    PubMed Central  CAS  PubMed  Google Scholar 

  • Taylor SP (1967) Aggressive behavior and physiological arousal as a function of provocation and the tendency to inhibit aggression. J Pers 35:297–310

    CAS  PubMed  Google Scholar 

  • Udo de Haes JI, Bosker FJ, Van Waarde A et al (2002) 5-HT(1A) receptor imaging in the human brain: effect of tryptophan depletion and infusion on [(18)F]MPPF binding. Synapse 46:108–115. doi:10.1002/syn.10134

    CAS  PubMed  Google Scholar 

  • Van der Veen FM, Evers EAT, van Deursen JA et al (2006) Acute tryptophan depletion reduces activation in the right hippocampus during encoding in an episodic memory task. Neuroimage 31:1188–1196. doi:10.1016/j.neuroimage.2006.01.014

    PubMed  Google Scholar 

  • Van der Veen FM, Evers EAT, Deutz NEP, Schmitt JAJ (2007) Effects of acute tryptophan depletion on mood and facial emotion perception related brain activation and performance in healthy women with and without a family history of depression. Neuropsychopharmacology 32:216–224. doi:10.1038/sj.npp.1301212

    PubMed  Google Scholar 

  • Varnäs K, Halldin C, Hall H (2004) Autoradiographic distribution of serotonin transporters and receptor subtypes in human brain. Hum Brain Mapp 22:246–260. doi:10.1002/hbm.20035

    PubMed  Google Scholar 

  • Von Polier GG, Biskup CS, Kötting WF et al (2014) Change in electrodermal activity after acute tryptophan depletion associated with aggression in young people with attention deficit hyperactivity disorder (ADHD). J Neural Transm 121:451–455. doi:10.1007/s00702-013-1119-5

    Google Scholar 

  • Walderhaug E, Lunde H, Nordvik JE et al (2002) Lowering of serotonin by rapid tryptophan depletion increases impulsiveness in normal individuals. Psychopharmacology 164:385–391. doi:10.1007/s00213-002-1238-4

    CAS  PubMed  Google Scholar 

  • Walker SC, Robbins TW, Roberts AC (2009) Differential contributions of dopamine and serotonin to orbitofrontal cortex function in the marmoset. Cereb Cortex 19:889–898. doi:10.1093/cercor/bhn136

    PubMed Central  CAS  PubMed  Google Scholar 

  • Walters JK, Davis M, Sheard MH (1979) Tryptophan-free diet: effects on the acoustic startle reflex in rats. Psychopharmacology 62:103–109

    CAS  PubMed  Google Scholar 

  • Wang L, Mullette-Gillman OA, Gadde KM et al (2009) The effect of acute tryptophan depletion on emotional distraction and subsequent memory. Soc Cogn Affect Neurosci 4:357–368. doi:10.1093/scan/nsp025

    PubMed Central  PubMed  Google Scholar 

  • Williams JHG, Perrett DI, Waiter GD, Pechey S (2007) Differential effects of tryptophan depletion on emotion processing according to face direction. Soc Cogn Affect Neurosci 2:264–273. doi:10.1093/scan/nsm021

    PubMed Central  PubMed  Google Scholar 

  • Yacubian J, Gläscher J, Schroeder K et al (2006) Dissociable systems for gain- and loss-related value predictions and errors of prediction in the human brain. J Neurosci 26:9530–9537. doi:10.1523/JNEUROSCI.2915-06.2006

    CAS  PubMed  Google Scholar 

  • Yatham LN, Liddle P, Shiah I-S et al (2001) Effects of rapid tryptophan depletion on brain 5-HT2 receptors: a PET study. Br J Psychiatry 178:448–453. doi:10.1192/bjp.178.5.448

    CAS  PubMed  Google Scholar 

  • Yatham LN, Liddle PF, Sossi V et al (2012) Positron emission tomography study of the effects of tryptophan depletion on brain serotonin(2) receptors in subjects recently remitted from major depression. Arch Gen Psychiatry 69:601–609. doi:10.1001/archgenpsychiatry.2011.1493

    CAS  PubMed  Google Scholar 

  • Young SN, Smith SE, Pihl RO, Ervin FR (1985) Tryptophan depletion causes a rapid lowering of mood in normal males. Psychopharmacology 87:173–177

    CAS  PubMed  Google Scholar 

  • Zepf FD, Landgraf M, Biskup CS et al (2013) No effect of acute tryptophan depletion on verbal declarative memory in young persons with ADHD. Acta Psychiatr Scand 128:133–141. doi:10.1111/acps.12089

    CAS  PubMed  Google Scholar 

  • Zimmermann P, Mohr C, Spangler G (2009) Genetic and attachment influences on adolescents’ regulation of autonomy and aggressiveness. J Child Psychol Psychiatry 50:1339–1347. doi:10.1111/j.1469-7610.2009.02158.x

    PubMed  Google Scholar 

Download references

Acknowledgments

The research leading to these results is funded by the European Union's Seventh Framework Programme (FP7/2007-2013) under grant agreement n° 602407.

Conflict of interest

FDZ was the recipient of an unrestricted award donated by the American Psychiatric Association (APA), the American Psychiatric Institute for Research and Education (APIRE) and AstraZeneca (Young Minds in Psychiatry Award). He has also received research support from the European Union (present work), the German Federal Ministry for Economics and Technology, the German Society for Social Pediatrics and Adolescent Medicine, from the Paul and Ursula Klein Foundation, the Dr. August Scheidel Foundation and a travel stipend donated by the GlaxoSmithKline Foundation. He is the recipient of an unrestricted educational grant donated by Shire Pharmaceuticals, Germany. He also received support from the Raine Medical Research Foundation (Visiting Professorship), and receives editor’s fees from Co-Action Publishing (Sweden). The other authors have nothing to declare and nothing to disclose.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to F. D. Zepf.

Additional information

Handling Editor: Z. Cheng.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Biskup, C.S., Gaber, T., Helmbold, K. et al. Amino acid challenge and depletion techniques in human functional neuroimaging studies: an overview. Amino Acids 47, 651–683 (2015). https://doi.org/10.1007/s00726-015-1919-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00726-015-1919-z

Keywords

Navigation