Skip to main content

Advertisement

Log in

Differential impact of pavlovian drug conditioned stimuli on in vivo dopamine transmission in the rat accumbens shell and core and in the prefrontal cortex

  • Original Investigation
  • Published:
Psychopharmacology Aims and scope Submit manuscript

Abstract

Rationale

Conditioned stimuli (CSs) by pavlovian association with reinforcing drugs (US) are thought to play an important role in the acquisition, maintenance and relapse of drug dependence.

Objective

The aim of this study was to investigate by microdialysis the impact of pavlovian drug CSs on behaviour and on basal and drug-stimulated dopamine (DA) in three terminal DA areas: nucleus accumbens shell, core and prefrontal cortex (PFCX).

Methods

Conditioned rats were trained once a day for 3 days by presentation of Fonzies filled box (FFB, CS) for 10 min followed by administration of morphine (1 mg/kg), nicotine (0.4 mg/kg) or saline, respectively. Pseudo-conditioned rats were presented with the FFB 10 h after drug or saline administration. Rats were implanted with microdialysis probes in the shell, core and PFCX. The effect of stimuli conditioned with morphine and nicotine on DA and on DA response to drugs was studied.

Results

Drug CSs elicited incentive reactions and released DA in the shell and PFCX but not in the core. Pre-exposure to morphine CS potentiated DA release to morphine challenge in the shell but not in the core and PFCX. This effect was related to the challenge dose of morphine and was stimulus-specific since a food CS did not potentiate the shell DA response to morphine. Pre-exposure to nicotine CS potentiated DA release in the shell and PFCX.

Conclusion

The results show that drug CSs stimulate DA release in the shell and medial PFCX and specifically potentiate the primary stimulant drug effects on DA transmission.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

Similar content being viewed by others

References

  • American Psychiatric Association (1994) Diagnostic and statistical manual for psychiatric disorders, 4th ed. American Psychiatric Association, Washington DC

    Google Scholar 

  • Bassareo V, Di Chiara G (1997) Differential influence of associative and nonassociative learning mechanisms on the responsiveness of prefrontal and accumbal dopamine transmission to food stimuli in rats fed ad libitum. J Neurosci 17 (2):851–861

    PubMed  CAS  Google Scholar 

  • Bassareo V, Di Chiara G (1999a) Differential responsiveness of DA transmission to food-stimuli in nucleus accumbens shell/core compartments. Neuroscience 89(3):637–641

    Article  PubMed  CAS  Google Scholar 

  • Bassareo V, Di Chiara G (1999b) Modulation of feeding-induced activation of mesolimbic dopamine transmission by appetitive stimuli and its relation to motivational state. Eur J Neurosci 11:4389–4397

    Article  PubMed  CAS  Google Scholar 

  • Bassareo V, De Luca MA, Di Chiara G (2002) Differential expression of motivational stimulus properties by dopamine in nucleus accumbens shell versus core and prefrontal cortex. J Neurosci 22(11):4709–4719

    PubMed  CAS  Google Scholar 

  • Berridge KC, Robinson TE (1998) What is the role of dopamine in reward: hedonic impact, reward learning, or incentive salience? Brain Res Brain Res Rev 28(3):309–369

    Article  PubMed  CAS  Google Scholar 

  • Bonson KR, Grant SJ, Contoreggi CS, Links JM, Metcalfe J, Weyl HL, Kurian V, Ernst M, London ED (2002) Neural systems and cue-induced cocaine craving. Neuropsychopharmacology 26(3):376–386

    Article  PubMed  CAS  Google Scholar 

  • Bradberry CW, Rubino SR (2004) Phasic alterations in dopamine and serotonin release in striatum and prefrontal cortex in response to cocaine predictive cues in behaving rhesus macaques. Neuropsychopharmacology 29(4):676–685

    PubMed  CAS  Google Scholar 

  • Bradberry CW, Barrett-Larimore LR, Jatlow P, Rubino SR (2000) Impact of self-administered cocaine and cocaine cues on extracellular dopamine in mesolimbic and sensorimotor striatum in rhesus monkeys. J Neurosci 20:3874–3883

    PubMed  CAS  Google Scholar 

  • Brazell MP, Mitchell SN, Joseph MH, Gray JA (1990) Acute administration of nicotine increases the in vivo extracellular levels of dopamine, 3,4-dihydroxyphenylacetic acid and ascorbic acid preferentially in the nucleus accumbens of the rat: comparison with caudate-putamen. Neuropharmacology 29(12):1177–1185

    Article  PubMed  CAS  Google Scholar 

  • Brown EE, Fibiger HC (1992) Cocaine-induced conditioned locomotion: absence of increases in dopamine release. Neuroscience 48:621–629

    Article  PubMed  CAS  Google Scholar 

  • Bymaster FP, Katner JS, Nelson DL, Hemrick-Leucke SK, Threlkeld PG, Heiligenstein JH, Morin SM, Gehlert DR, Perry KW (2002) Atomoxetine increases extracellular levels of norepinephrine and dopamine in prefrontal cortex of rat: a potential mechanism for efficacy in attention deficit/hyperactivity disorder. Neuropsychopharmacology 27(5):699–711

    Article  PubMed  CAS  Google Scholar 

  • Carter BL, Tiffany ST (1999) Cue-reactivity and the future of addiction research. Addiction 94(3):349–351

    Article  PubMed  CAS  Google Scholar 

  • Childress AR, McLellan AT, Ehrmann R, O’Brien CP (1988) Classically conditioned responses in opioid and cocaine dependence: a role in relapse. In: Learning factors in substance abuse. NIDA research monograph 94. US Government Print Office, Washington DC, pp 25–43

  • Ciccocioppo R, Martin-Fardon R, Weiss F (2002) Effect of selective blockade of μ1 and δ opioid receptors on reinstatement of alcohol-seeking behavior by drug-associated stimuli in rats. Neuropsychopharmacology 27(3):391–399

    Article  PubMed  CAS  Google Scholar 

  • Datla KP, Ahier RG, Young AM, Gray JA, Joseph MH (2002) Conditioned appetitive stimulus increases extracellular dopamine in the nucleus accumbens of the rat. Eur J Neurosci 16(10):1987–1993

    Article  PubMed  CAS  Google Scholar 

  • Devoto P, Flore G, Pira L, Diana M, Gessa GL (2002) Co-release of noradrenaline and dopamine in the prefrontal cortex after acute morphine and during morphine withdrawal. Psychopharmacology 160(2):220–224

    Article  PubMed  CAS  Google Scholar 

  • Di Chiara G (1995) The role of dopamine in drug abuse viewed from the perspective of its role in motivation. Drug Alcohol Depend 38:95–137

    Article  PubMed  Google Scholar 

  • Di Chiara G (1998) A motivational learning hypothesis of the role of mesolimbic dopamine in compulsive drug use. J Psychopharmacol 12(1):54–67

    PubMed  Google Scholar 

  • Di Chiara G (2002) Nucleus accumbens shell and core dopamine: differential role in behavior and addiction. Behav Brain Res 137:75–114

    Article  PubMed  Google Scholar 

  • Di Chiara G, Imperato A (1988) Drugs abused by humans preferentially increase synaptic dopamine concentrations in the mesolimbic system of freely moving rats. Proc Natl Acad Sci USA 85:5274–5278

    Article  PubMed  Google Scholar 

  • Di Chiara G, Tanda G, Carboni E (1996) Estimation of in-vivo neurotransmitter release by brain microdialysis: the issue of validity. Behav Pharmacol 7(7):640–657

    Google Scholar 

  • Di Chiara G, Tanda G, Frau R, Carboni E (1993) On the preferential release of dopamine in the nucleus accumbens by amphetamine: further evidence obtained by vertically implanted concentric dialysis probes. Psychopharmacology 112:98–402

    Article  Google Scholar 

  • Di Chiara G, Bassareo V, Fenu S, De Luca MA, Spina L, Cadoni C, Acquas E, Carboni E, Valentini V, Lecca D (2004) Dopamine and drug addiction: the nucleus accumbens shell connection. Neuropharmacology 47(Suppl 1):227–241

    PubMed  Google Scholar 

  • Di Ciano P, Blaha CD, Phillips AG (1998a) The relation between dopamine oxidation currents in the nucleus accumbens and conditioned increases in motor activity in rats following repeated administration of D-amphetamine or cocaine. Eur J Neurosci 10:1113–1120

    Article  PubMed  Google Scholar 

  • Di Ciano P, Blaha CD, Phillips AG (1998b) Conditioned changes in dopamine oxidation currents in the nucleus accumbens of rats by stimuli paired with self-administration or yoked-administration of d-amphetamine. Eur J Neurosci 10:1121–1127

    Article  PubMed  Google Scholar 

  • Duvauchelle CL, Ikegami A, Castaneda E (2000a) Conditioned increases in behavioural activity and accumbens dopamine levels produced by intravenous cocaine. Behav Neurosci 114(6):1156–1166

    Article  PubMed  CAS  Google Scholar 

  • Duvauchelle CL, Ikegami A, Asami S, Robens J, Kressin K, Castaneda E (2000b) Effects of cocaine context on Nacc dopamine and behavioral activity after repeated intravenous cocaine administration. Brain Res 862:49–58

    Article  PubMed  CAS  Google Scholar 

  • Everitt BJ, Parkinson JA, Olmstead MC, Arroyo M, Robledo P, Robbins TW (1999) Associative processes in addiction and reward. The role of amygdala–ventral striatal subsystems. Ann N Y Acad Sci 877:412–438

    Article  PubMed  CAS  Google Scholar 

  • Fontana DJ, Post RM, Pert A (1993) Conditioned increases in mesolimbic dopamine overflow by stimuli associated with cocaine. Brain Res 629:31–39

    Article  PubMed  CAS  Google Scholar 

  • Fuchs RA, Evans KA, Ledford CC, Parker MP, Case JM, Mehta RH, See RE (2005) The role of dorsomedial prefrontal cortex, basolateral amygdala, and dorsal hippocampus in contextual reinstatement of cocaine seeking in rats. Neuropsychopharmacology 30(2):296–309

    Article  PubMed  CAS  Google Scholar 

  • Gobert A, Millan MJ (1999) Modulation of dialysate levels of dopamine, noradrenaline, and serotonin (5-HT) in the frontal cortex of freely-moving rats by (-)-pindolol alone and in association with 5-HT reuptake inhibitors: comparative roles of beta-adrenergic, 5-HT1A, and 5-HT1B receptors. Neuropsychopharmacology 21(2):268–284

    Article  PubMed  CAS  Google Scholar 

  • Goldstein R, Volkow ND (2002) Drug addiction and its underlying neurobiological basis: neuroimaging evidence for the involvement of the frontal cortex. Am J Psychiatry 159(10):1642–1652, 2002 Oct

    Article  PubMed  Google Scholar 

  • Grant S, London ED, Newlin DB, Villemagne VL, Liu X, Contoreggi C, Phillips RL, Kimes AS, Margolin A (1996) Activation of memory circuits during cue-elicited cocaine craving. Proc Natl Acad Sci USA 93(21):12040–12045

    Article  PubMed  CAS  Google Scholar 

  • Heimer L, Alheid GF, de Olmos JS, Groenewegen HJ, Haber SN, Harlan RE, Zahm DS (1997) The accumbens: beyond the core-shell dichotomy. J Neuropsychiatry Clin Neurosci 9(3):354–381

    PubMed  CAS  Google Scholar 

  • Hogarth L, Dickinson A, Hutton SB, Elbers N, Duka T (2006) Drug expectancy is necessary for stimulus control of human attention, instrumental drug-seeking behaviour and subjective pleasure. Psychopharmacology 185(4):495–504

    Article  PubMed  CAS  Google Scholar 

  • Ito R, Dalley JW, Howes SR, Robbins TW, Everitt BJ (2000) Dissociation in conditioned dopamine release in the nucleus accumbens core and shell in response to cocaine cues and during cocaine-seeking behavior in rats. J Neurosci 20:7489–7495

    PubMed  CAS  Google Scholar 

  • Kuczenski R, Segal DS (1992) Differential effects of amphetamine and dopamine uptake blockers (cocaine, nomifensine) on caudate and accumbens dialysate dopamine and 3-methoxytyramine. J Pharmacol Exp Ther 262:1085–1094

    PubMed  CAS  Google Scholar 

  • McLaughlin J, See RE (2003) Selective inactivation of the dorsomedial prefrontal cortex and the basolateral amygdala attenuates conditioned-cued reinstatement of extinguished cocaine-seeking behaviour in rats. Psychopharmacology 168(1–2):57–65

    Article  PubMed  CAS  Google Scholar 

  • Neisewander JL, O’Dell LE, Tran-Nguyen LT, Castaneda E, Fuchs RA (1996) Dopamine overflow in the nucleus accumbens during extinction and reinstatement of cocaine self-administration behavior. Neuropsychopharmacology 15(5):506–514

    Article  PubMed  CAS  Google Scholar 

  • Nisell M, Nomikos GG, Hertel P, Panagis G, Svensson TH (1996) Condition-independent sensitization of locomotor stimulation and mesocortical dopamine release following chronic nicotine treatment in the rat. Synapse 22(4):369–381

    Article  PubMed  CAS  Google Scholar 

  • Park WK, Bari AA, Jey AR, Anderson SM, Spealman RD, Rowlett JK, Pierce RC (2002) Cocaine administered into the medial prefrontal cortex reinstates cocaine-seeking behavior by increasing AMPA receptor-mediated glutamate transmission in the nucleus accumbens. J Neurosci 22(7):2916–2925

    PubMed  CAS  Google Scholar 

  • Paxinos G, Watson C (1998) The rat brain in stereotaxic coordinates, 4th ed. Academic, New York

    Google Scholar 

  • Pettit HO, Justice JB Jr (1989) Dopamine in the nucleus accumbens during cocaine self-administration as studied by in vivo microdialysis. Pharmacol Biochem Behav 34:899–904

    Article  PubMed  CAS  Google Scholar 

  • Phillips PE, Stuber GD, Heien ML, Wightman RM, Carelli RM (2003) Subsecond dopamine release promotes cocaine seeking. Nature 422(6932):614–618

    Article  PubMed  CAS  Google Scholar 

  • Reid MS, Ho LB, Berger SP (1998) Behavioral and neurochemical components of nicotine sensitization following 15-day pretreatment: studies on contextual conditioning. Behav Pharmacol 9(2):137–148

    PubMed  CAS  Google Scholar 

  • Robinson TE, Berridge KC (1993) The neural basis of drug craving: an incentive-sensitization theory of addiction. Brain Res Rev 18:247–291

    Article  PubMed  CAS  Google Scholar 

  • Rohsenow DJ, Niaura RS, Childress AR, Abrams DB, Monti PM (1990) Cue reactivity in addictive behaviors: theoretical and treatment implications. Int J Addict 25(7A–8A):957–993

    PubMed  Google Scholar 

  • Shaham Y, Shalev U, Lu L, De Wit H, Stewart J (2003) The reinstatement model of drug relapse: history, methodology and major findings. Psychopharmacology (Berl) 168(1–2):3–20

    Article  CAS  Google Scholar 

  • Stewart J, de Wit H, Eikelboom R (1984) Role of unconditioned and conditioned drug affects in the self-administration of opiates and stimulants. Psychol Rev 91:251–268

    Article  PubMed  CAS  Google Scholar 

  • Stuber GD, Wightman RM, Carelli RM (2005) Extinction of cocaine self-administration reveals functionally and temporally distinct dopaminergic signals in the nucleus accumbens. Neuron 46(4):661–669

    Article  PubMed  CAS  Google Scholar 

  • Sun W, Rebec GV (2005) The role of prefrontal cortex D1-like and D2-like receptors in cocaine-seeking behavior in rats. Psychopharmacology (Berl) 177(3):315–323

    Article  CAS  Google Scholar 

  • Tanda G, Bassareo V, Di Chiara G (1996) Mianserin markedly and selectively increases extracellular dopamine in the prefrontal cortex as compared to the nucleus accumbens of the rat. Psychopharmacology (Berl) 123:127–130

    Article  CAS  Google Scholar 

  • Ventura R, Cabib S, Alcaro A, Orsini C, Puglisi-Allegra S (2003) Norepinephrine in the prefrontal cortex is critical for amphetamine-induced reward and mesoaccumbens dopamine release. J Neurosci 23(5):1879–1885

    PubMed  CAS  Google Scholar 

  • Volkow ND, Wang GJ, Ma Y, Fowler JS, Zhu W, Maynard L, Telang F, Vaska P, Ding YS, Wong C, Swanson JM (2003) Expectation enhances the regional brain metabolic and reinforcing effects of stimulants in cocaine abusers. J Neurosci 23(36):11461–11468

    PubMed  CAS  Google Scholar 

  • Weiss F, Paulus MP, Lorang MT, Koob GF (1992) Increases in extracellular dopamine in the nucleus accumbens by cocaine are inversely related to basal levels: effects of acute and repeated administration. J Neurosci 12(11):4372–4380

    PubMed  CAS  Google Scholar 

  • Weiss F, Maldonado-Vlaar CS, Parson LH, Kerr TM, Smith DL, Ben-Shahar O (2000) Control of cocaine-seeking behavior by drug-associated stimuli in rats: effects on recovery of extinguished operant-responding and extracellular dopamine levels in amygdala and nucleus accumbens. Proc Natl Acad Sci USA 97(8):4321–4326

    Article  PubMed  CAS  Google Scholar 

  • Westerink BH, Kawahara Y, De Boer P, Geels C, De Vries JB, Wikstrom HV, Van Kalkeren A, Van Vliet B, Kruse CG, Long SK (2001) Antipsychotic drugs classified by their effects on the release of dopamine and noradrenaline in the prefrontal cortex and striatum. Eur J Pharmacol 412(2):127–138

    Article  PubMed  CAS  Google Scholar 

  • Wise RA (1982) Neuroleptics and operant behavior: the anhedonia hypothesis. Behav Brain Sci 5:39–87

    Article  Google Scholar 

  • Wise RA, Bozarth MA (1987) A psychomotor stimulant theory of addiction. Psychol Rev 94(4):469–492

    Article  PubMed  CAS  Google Scholar 

  • Zahm DS, Heimer L (1993) Specificity in the efferent projections of the nucleus accumbens in the rat: comparison of the rostral pole projection patterns with those of the core and shell. J Comp Neurol 327(2):220–232

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Gaetano Di Chiara.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Bassareo, V., De Luca, M.A. & Di Chiara, G. Differential impact of pavlovian drug conditioned stimuli on in vivo dopamine transmission in the rat accumbens shell and core and in the prefrontal cortex. Psychopharmacology 191, 689–703 (2007). https://doi.org/10.1007/s00213-006-0560-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00213-006-0560-7

Keywords

Navigation