Skip to main content

Advertisement

Log in

Family and case–control association study of the tumor necrosis factor-alpha (TNF-α) gene with schizophrenia and response to antipsychotic medication

  • Original Investigation
  • Published:
Psychopharmacology Aims and scope Submit manuscript

Abstract

Background

Dysregulation of the immune system has been suggested to play a role in the etiology of schizophrenia (SCZ). In this context, the tumor necrosis factor-alpha (TNF-α) is considered an interesting candidate for genetic studies as overproduction of TNF-α, which may be genetically modulated, can influence neuron growth and proliferation. Moreover, the TNF-α gene is located on chromosome 6p21.3, a region that has been found to be associated with SCZ in numerous linkage studies. One functional polymorphism, G-308A, has been studied for association with SCZ yielding inconsistent findings.

Results and discussions

In our study, we investigated the G-308A polymorphism with SCZ including 95 nuclear families and 149 pairs of cases/controls matched by age, gender, and ethnicity. Furthermore, we examined BPRS change scores (after 6 weeks, 3 months, and 6 months) and weight changes (after 6 weeks) with this polymorphism in 153 and 247 patients, respectively, after clozapine treatment. We did not observe biased transmission using family-based association test (P=0.752) or significant differences in case/control studies (P=0.839). However, patients with allele A showed significant improvement on BPRS change score after 3 months (t=2.000, P=0.049) and 6 months (t=2.481, P=0.015) of clozapine treatment when compared with patients without allele A. Moreover, trends were observed for genotype A/A with clinical improvement in BPRS change score after 6 months (F=2.834, P=0.065) using ANCOVA, and for allele G with weight gain (t=−1.702, P=0.091).

Conclusion

Overall, the G-308A polymorphism of the TNF-α gene does not appear to play a major role in SCZ but might be involved in antipsychotic response.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  • Allison DB, Mentore JL, Heo M, Chandler LP, Cappelleri JC, Infante MC, Weiden PJ (1999) Antipsychotic-induced weight gain: a comprehensive research synthesis. Am J Psychiatry 156:1686–1696

    PubMed  CAS  Google Scholar 

  • American Psychiatric Association (1994) Diagnostic and statistical manual of mental disorders, 4th edn (DSM-IV). American Psychiatric Association, Washington, DC

    Google Scholar 

  • Antonarakis SE, Blouin JL, Pulver AE, Wolyniec P, Lasseter VK, Nestadt G, Kasch L, Babb R, Kazazian HH, Dombroski B et al (1995) Schizophrenia susceptibility and chromosome 6p24-22. Nat Genet 11(3):235–236

    Article  PubMed  CAS  Google Scholar 

  • Argiles JM, Lopez-Soriano J, Busquets S, Lopez-Soriano FJ (1997) Journey from cachexia to obesity by TNF. FASEB J 11(10):743–751

    PubMed  CAS  Google Scholar 

  • Basile VS, Masellis M, McIntyre RS, Meltzer HY, Lieberman JA, Kennedy JL (2001) Genetic dissection of atypical antipsychotic-induced weight gain: novel preliminary data on the pharmacogenetic puzzle. J Clin Psychiatry 62(Suppl 23):45–66

    PubMed  CAS  Google Scholar 

  • Boin F, Zanardini R, Pioli R, Altamura CA, Maes M, Cennarelli M (2001) Association between −G308A tumor necrosis factor alpha gene polymorphism and schizophrenia. Mol Psychiatry 6(1):79–82

    Article  PubMed  CAS  Google Scholar 

  • Bullo-Bonet M, Garcia-Lorda P, Lopez-Soriano FJ, Argiles JM, Salas-Salvado J (1999) Tumour necrosis factor, a key role in obesity? FEBS Lett 45(3):215–219

    Article  Google Scholar 

  • Dandona P, Weinstock R, Thusu K, Abdel-Rahman E, Aljada A, Wadden T (1998) Tumor necrosis factor-alpha in sera of obese patients: fall with weight loss. J Clin Endocrinol Metab 83(8):2907–2910

    Article  PubMed  CAS  Google Scholar 

  • Duan S, Xu Y, Chen W, Liu Z, Guo T, Gao J, Bian L, Zhen Y, Li X, Zhang X, Pan Y, Gu N, Feng G, He L (2004) No association between the promoter variants of tumor necrosis factor alpha (TNF-α) and schizophrenia in Chinese Han population. Neurosci Lett 366:139–143

    Article  PubMed  CAS  Google Scholar 

  • Ebrinc S, Top C, Oncul O, Basoglu C, Cavuslu S, Cetin M (2002) Serum interleukin 1 alpha and interleukin 2 levels in patients with schizophrenia. J Int Med Res 30(3):314–317

    PubMed  CAS  Google Scholar 

  • Endicott J (2001) Good diagnoses require good diagnosticians: collecting and integrating the data. Am J Med Genet 105(1):48–49

    Article  PubMed  CAS  Google Scholar 

  • First MB, Gibbon M, Spitzer RL, Williams JBW (1996) Structured clinical interview for DSM-IV axis I disorders-research version (SCID-I/P, version 2.0, February, Final Version). American Psychiatric Press, Washington, DC

    Google Scholar 

  • Gaughran F (2002) Immunity and schizophrenia: autoimmunity, cytokines, and immune responses. Int Rev Neurobiol 52:275–302

    Article  PubMed  CAS  Google Scholar 

  • Handoko HY, Nancarrow DJ, Hayward NK, Ohaeri JU, Aghanwa H, McGrath JJ, Levinson DF, Johns C, Walters MK, Nertney DA, Srinivasan TN, Thara R, Mowry BJ (2003) Tumor necrosis factor haplotype analysis amongst schizophrenia probands from four distinct populations in the Asia-Pacific region. Am J Med Genet 121B(1):1–6

    Article  PubMed  Google Scholar 

  • Hashimoto R, Yoshida M, Ozaki N, Yamanouchi Y, Iwata N, Suzuki T, Kitajima T, Tatsumi M, Kamijima K, Kunugi H (2004) Association analysis of the −308G>A promoter polymorphism of the tumor necrosis factor alpha (TNF-α) gene in Japanese patients with schizophrenia. J Neural Transm 111:217–221

    Article  PubMed  CAS  Google Scholar 

  • Hauner H, Bender M, Haastert B, Hube F (1998) Plasma concentrations of soluble TNF-alpha receptors in obese subjects. Int J Obes Relat Metab Disord 22(12):1239–1243

    Article  PubMed  CAS  Google Scholar 

  • Hodgkinson CA, Goldman D, Jaeger J, Persaud S, Kane JM, Lipsky RH, Malhotra AK (2004) Disrupted in schizophrenia 1 (DISC1): association with schizophrenia, schizoaffective disorder, and bipolar disorder. Am J Hum Genet 75(5):862–872

    Article  PubMed  CAS  Google Scholar 

  • Ingelman-Sundberg M (2001) Pharmacogenetics: an opportunity for a safer and more efficient pharmacotherapy. J Intern Med 250:186–200

    Article  PubMed  CAS  Google Scholar 

  • Kane JM, Honigfeld G, Singer J, Meltzer H (1988) Clozapine in treatment-resistant schizophrenics. Psychopharmacol Bull 24:62–67

    PubMed  CAS  Google Scholar 

  • Kay SR, Fiszbein A, Opler LA (1987) The positive and negative syndrome scale (PANSS) for schizophrenia. Schizophr Bull 13:261–276

    PubMed  CAS  Google Scholar 

  • Kim DJ, Kim W, Yoon SJ, Go HJ, Choi BM, Jun TY, Kim YK (2001) Effect of risperidone on serum cytokines. Int J Neurosci 111(1–2):11–19

    Article  PubMed  CAS  Google Scholar 

  • Kim YK, Myint AM, Lee BH, Han CS, Lee HJ, Kim DJ, Leonard BE (2004) Th1, Th2 and Th3 cytokines alteration in schizophrenia. Prog Neuropsychopharmacol Biol Psychiatry 28(7):1129–1134

    Article  PubMed  CAS  Google Scholar 

  • Kockelkorn TT, Arai M, Matsumoto H, Fukuda N, Yamada K, Minabe Y, Toyota T, Ujike H, Sora I, Mori N, Yoshikawa T, Itokawa M (2004) Association study of polymorphisms in the 5′ upstream region of human DISC1 gene with schizophrenia. Neurosci Lett 368(1):41–45

    Article  PubMed  CAS  Google Scholar 

  • Lahdelma L, Ahokas A, Andersson LC, Suvisaari J, Hovatta I, Huttunen MO, Koskimies S (2001) Mitchell B. Balter Award. Human leukocyte antigen-A1 predicts a good therapeutic response to clozapine with a low risk of agranulocytosis in patients with schizophrenia. J Clin Psychopharmacol 21(1): 4–7

    Article  PubMed  CAS  Google Scholar 

  • Lahiri DK, Nurnberger JI (1991) A rapid non-enzymatic method for the preparation of HMW DNA from blood for RFLP analysis. Nucleic Acids Res 19:5444

    Article  PubMed  CAS  Google Scholar 

  • Laird NM, Horvath S, Xu X (2000) Implementing a unified approach to family-based tests of association. Genet Epidemiol 19(Suppl 1):36–42

    Article  Google Scholar 

  • Lange C, DeMeo DL, Laird NM (2002) Power and design considerations for a general class of family-based association tests: quantitative traits. Am J Hum Genet 71:1330–1341

    Article  PubMed  CAS  Google Scholar 

  • Lindholm E, Ekholm B, Balciuniene J, Johansson G, Castensson A, Koisti M, Nylander PO, Pettersson U, Adolfsson R, Jazin E (1999) Linkage analysis of a large Swedish kindred provides further support for a susceptibility locus for schizophrenia on chromosome 6p23. Am J Med Genet 88:369–377

    Article  PubMed  CAS  Google Scholar 

  • Liu X, He G, Wang X, Chen Q, Qian X, Lin W, Li D, Gu N, Feng G, He L (2004) Association of DAAO with schizophrenia in the Chinese population. Neurosci Lett 369(3):228–233

    Article  PubMed  CAS  Google Scholar 

  • Masellis M, Basile V, Meltzer HY, Lieberman JA, Sevy S, Macciardi FM, Cola P, Howard A, Badri F, Nothen MM, Kalow W, Kennedy JL (1998) Serotonin subtype 2 receptor genes and clinical response to clozapine in schizophrenia patients. Neuropsychopharmacology 19(2):123–132

    Article  PubMed  CAS  Google Scholar 

  • Meira-Lima IV, Pereira AC, Mota GF, Floriano M, Araujo F, Mansur AJ, Krieger JE, Vallada H (2003) Analysis of a polymorphism in the promoter region of the tumor necrosis factor alpha gene in schizophrenia and bipolar disorder: further support for an association with schizophrenia. Mol Psychiatry 8(8):718–720

    Article  PubMed  CAS  Google Scholar 

  • Merrill JE (1992) Proinflammatory and anti-inflammatory cytokines in multiple sclerosis and central nervous system acquired immunodeficiency syndrome. J Immunother 12(3):167–170

    Article  PubMed  CAS  Google Scholar 

  • Millar JK, Wilson-Annan JC, Anderson S, Christie S, Taylor MS, Semple CA, Devon RS, Clair DM, Muir WJ, Blackwood DH, Porteous DJ (2000) Disruption of two novel genes by a translocation co-segregating with schizophrenia. Hum Mol Genet 9(9):1415–1423

    Article  PubMed  CAS  Google Scholar 

  • Monteleone P, Fabrazzo M, Tortorella A, Maj M (1997) Plasma levels of interleukin-6 and tumor necrosis factor alpha in chronic schizophrenia: effects of clozapine treatment. Psychiatry Res 71(1):11–17

    Article  PubMed  CAS  Google Scholar 

  • Müller DJ, Muglia P, Fortune T, Kennedy JL (2004) Pharmacogenetics of antipsychotic-induced weight gain. Pharmacol Res 49(4):309–329

    Article  PubMed  CAS  Google Scholar 

  • Numakawa T, Yagasaki Y, Ishimoto T, Okada T, Suzuki T, Iwata N, Ozaki N, Taguchi T, Tatsumi M, Kamijima K, Straub RE, Weinberger DR, Kunugi H, Hashimoto R (2004) Evidence of novel neuronal functions of dysbindin, a susceptibility gene for schizophrenia. Hum Mol Genet 13(21):2699–2708

    Article  PubMed  CAS  Google Scholar 

  • Ohnuma T, Suzuki T, Arai H (2005) Hypothesis: minimal changes in neural transmission in schizophrenia: decreased glutamatergic and GABAergic functions in the prefrontal cortex. Prog Neuropsychopharmacol Biol Psychiatry 29(6):889–894

    Article  PubMed  CAS  Google Scholar 

  • Ott J (1999) Analysis of human genetic linkage, 3rd edn. Johns Hopkins University Press, Baltimore, MD

    Google Scholar 

  • Overall JE, Gorham DR (1962) The brief psychiatric rating scale. Psychol Rep 10:799–812

    Article  Google Scholar 

  • Pae CU, Chae JH, Bahk WM, Han H, Jun TY, Kim KS, Kwon YS, Serretti A (2003) Tumor necrosis factor-alpha gene polymorphism at position −308 and schizophrenia in the Korean population. Psychiatry Clin Neurosci 57(4):399–403

    Article  PubMed  CAS  Google Scholar 

  • Pae CU, Yoon CH, Kim TS, Kim JJ, Park SH, Lee CU, Lee SJ, Lee C, Paik IH (2006) Antipsychotic treatment may alter T-helper (TH) 2 arm cytokines. Int Immunopharmacol 6(4):666–671

    Article  PubMed  CAS  Google Scholar 

  • Pickering M, Cumiskey D, O’Connor JJ (2005) Actions of TNF-α on glutamatergic synaptic transmission in the central nervous system. Exp Physiol 90(5):663–670

    Article  PubMed  CAS  Google Scholar 

  • Pollmächer T, Haack M, Schuld A, Kraus T, Hinze-Selch D (2000) Effects of antipsychotic drugs on cytokine networks. J Psychiatr Res 34(6):369–382

    Article  PubMed  Google Scholar 

  • Riedel M, Krönig H, Schwarz MJ, Engel RR, Kühn K-U, Sikorski C, Sokullu S, Ackenheil M, Möller H-J, Müller N (2002) No association between the G308A polymorphism of the tumor necrosis factor-alpha gene and schizophrenia. Eur Arch Psychiatry Clin Neurosci 252:232–234

    Article  PubMed  Google Scholar 

  • Rybakowski JK, Czerski PM, Borkowska A, Rybakowski F, Kapelski P, Hauser J (2002) Tumor necrosis factor-alpha promoter gene polymorphism: association with schizophrenia and eye movement disturbances. Biol Psychiatry 51:26 (Suppl)

    Google Scholar 

  • Schumacher J, Jamra RA, Freudenberg J, Becker T, Ohlraun S, Otte AC, Tullius M, Kovalenko S, Bogaert AV, Maier W, Rietschel M, Propping P, Nothen MM, Cichon S (2004) Examination of G72 and D-amino-acid oxidase as genetic risk factors for schizophrenia and bipolar affective disorder. Mol Psychiatry 9(2):203–207

    Article  PubMed  CAS  Google Scholar 

  • Schwab SG, Albus M, Hallmayer J, Honig S, Borrmann M, Lichtermann D, Ebstein RP, Ackenheil M, Lerer B, Risch N et al (1995) Evaluation of a susceptibility gene for schizophrenia on chromosome 6p by multipoint affected sib-pair linkage analysis. Nat Genet 11:325–327

    Article  PubMed  CAS  Google Scholar 

  • Schwab SG, Knapp M, Mondabon S, Hallmayer J, Borrmann-Hassenbach M, Albus M, Lerer B, Rietschel M, Trixler M, Maier W, Wildenauer DB (2003a) Support for association of schizophrenia with genetic variation in the 6p22.3 gene, dysbindin, in sib-pair families with linkage and in an additional sample of triad families. Am J Hum Genet 72(1):185–190

    Article  PubMed  CAS  Google Scholar 

  • Schwab SG, Mondabon S, Knapp M, Albus M, Hallmayer J, Borrmann-Hassenbach M, Trixler M, Gross M, Schulze TG, Rietschel M, Lerer B, Maier W, Wildenauer DB (2003b) Association of tumor necrosis factor alpha gene −G308A polymorphism with schizophrenia. Schizophr Res 65(1):19–25

    Article  PubMed  Google Scholar 

  • Scordo MG, Spina E (2002) Cytochrome P450 polymorphisms and response to antipsychotic therapy. Pharmacogenomics 3:201–218

    Article  PubMed  CAS  Google Scholar 

  • Sham PC, Curtis D (1995) Monte Carlo tests for associations between disease and alleles at highly polymorphic loci. Ann Hum Genet 59:97–105

    Article  PubMed  CAS  Google Scholar 

  • Spies T, Morton CC, Nedospasov SA, Fiers W, Pious D, Strominger JL (1986) Genes for the tumor necrosis factors alpha and beta are linked to human major histocompatibility complex. Proc Natl Acad Sci 83:8699–8702

    Article  PubMed  CAS  Google Scholar 

  • Stefansson H, Sarginson J, Kong A, Yates P, Steinthorsdottir V, Gudfinnsson E, Gunnarsdottir S, Walker N, Petursson H, Crombie C, Ingason A, Gulcher JR, Stefansson K, St Clair D (2003) Association of neuregulin 1 with schizophrenia confirmed in a Scottish population. Am J Hum Genet 72(1):83–87

    Article  PubMed  CAS  Google Scholar 

  • Tan E-C, Chong S-A, Tan C-H, Teo Y-Y, Peng K, Mahendran R (2003) Tumor necrosis factor-α gene promoter polymorphisms in chronic schizophrenia. Biol Psychiatry 54:1205–1211

    Article  PubMed  CAS  Google Scholar 

  • Tsai SJ (2005) Central N-acetyl aspartylglutamate deficit: a possible pathogenesis of schizophrenia. Med Sci Monit 11(9):HY39–HY45

    PubMed  CAS  Google Scholar 

  • Tsai S-J, Hong C-J, Yu YW-Y, Lin C-H, Liu L-L (2003) No association of tumor necrosis factor alpha gene polymorphisms with schizophrenia or response to clozapine. Schizophr Res 65:27–32

    Article  PubMed  Google Scholar 

  • Van Den Bogaert A, Schumacher J, Schulze TG, Otte AC, Ohlraun S, Kovalenko S, Becker T, Freudenberg J, Jonsson EG, Mattila-Evenden M, Sedvall GC, Czerski PM, Kapelski P, Hauser J, Maier W, Rietschel M, Propping P, Nothen MM, Cichon S (2003) The DTNBP1 (dysbindin) gene contributes to schizophrenia, depending on family history of the disease. Am J Hum Genet 73(6):1438–1443

    Article  Google Scholar 

  • Vojvoda D, Grimmell K, Sernyak M, Mazure CM (1996) Monozygotic twins concordant for response to clozapine. Lancet 347:61

    Article  PubMed  CAS  Google Scholar 

  • Volavka J, Czobor P, Sheitman B, Lindenmayer JP, Citrome L, McEvoy JP, Cooper TB, Chakos M, Lieberman JA (2002) Clozapine, olanzapine, risperidone, and haloperidol in the treatment of patients with chronic schizophrenia and schizoaffective disorder. Am J Psychiatry 159:255–262

    Article  PubMed  Google Scholar 

  • Wang S, Sun C-E, Walczak CA, Ziegle JS, Kipps BR, Goldin LR, Diehl SR (1995) Evidence for a susceptibility locus for schizophrenia on chromosome 6pter-p22. Nat Genet 10:41–46

    Article  PubMed  Google Scholar 

  • Weinberger DR, Lipska BK (1995) Cortical maldevelopment, anti-psychotic drugs, and schizophrenia: a search for common ground. Schizophr Res 16(2):87–110

    Article  PubMed  CAS  Google Scholar 

  • Williams NM, Preece A, Spurlock G, Norton N, Williams HJ, Zammit S, O’Donovan MC, Owen MJ (2003) Support for genetic variation in neuregulin 1 and susceptibility to schizophrenia. Mol Psychiatry 8(5):485–487

    Article  PubMed  CAS  Google Scholar 

  • Wilson AG, de Vries N, Pociot F, di Giovine FS, van der Putte LB, Duff GW (1993) An allelic polymorphism within the human tumor necrosis factor alpha promoter region is strongly associated with HLA A1, B8, and DR3 alleles. J Exp Med 177(2):557–560

    Article  PubMed  CAS  Google Scholar 

  • Wilson AG, Symons JA, McDowell TL, McDevitt HO, Duff GW (1997) Effects of a polymorphism in the human tumor necrosis factor alpha promoter on transcriptional activation. Proc Natl Acad Sci USA 94:3195–3199

    Article  PubMed  CAS  Google Scholar 

  • Yang JZ, Si TM, Ruan Y, Ling YS, Han YH, Wang XL, Zhou M, Zhang HY, Kong QM, Liu C, Zhang DR, Yu YQ, Liu SZ, Ju GZ, Shu L, Ma DL, Zhang D (2003a) Association study of neuregulin 1 gene with schizophrenia. Mol Psychiatry 8(7):706–709

    Article  PubMed  CAS  Google Scholar 

  • Yang J, Si T, Ling Y, Ruan Y, Han Y, Wang X, Zhou M, Zhang D, Zhang H, Kong Q, Liu C, Li X, Yu Y, Liu S, Shu L, Ma D, Wei J, Zhang D (2003b) Association study between interleukin-1beta gene (IL-1beta) and schizophrenia. Life Sci 72(26):3017–3021

    Article  PubMed  CAS  Google Scholar 

  • Yu L, Yang MS, Zhao J, Shi YY, Zhao XZ, Yang JD, Liu ZJ, Gu NF, Feng GY, He L (2004) An association between polymorphisms of the interleukin-10 gene promoter and schizophrenia in the Chinese population. Schizophr Res 71(1):179–183

    Article  PubMed  Google Scholar 

  • Zhang XY, Zhou DF, Zhang PY, Wu GY, Cao LY, Shen YC (2002) Elevated interleukin-2, interleukin-6 and interleukin-8 serum levels in neuroleptic-free schizophrenia: association with psychopathology. Schizophr Res 57(2–3):247–258

    Article  PubMed  Google Scholar 

Download references

Acknowledgements

This work has been supported by the Ontario Graduate Scholarship (GZ), the Institute of Medical Science Continuing Award (GZ), and the Canadian Institutes of Health Research (CIHR) postdoctoral fellowship award (DJM). Gwyneth Zai and Daniel J. Müller have contributed equally to this work.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to James L. Kennedy.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Zai, G., Müller, D.J., Volavka, J. et al. Family and case–control association study of the tumor necrosis factor-alpha (TNF-α) gene with schizophrenia and response to antipsychotic medication. Psychopharmacology 188, 171–182 (2006). https://doi.org/10.1007/s00213-006-0482-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00213-006-0482-4

Keywords

Navigation